代数学笔记9: 群的直积,可解群,自由群,群表示
群的直积
外直积
H 1 , H 2 H_1,H_2 H1,H2是两个群(固定的群), 且有 G = H 1 × H 2 G=H_1\times H_2 G=H1×H2,(构造的新群)
G = ( { ( h 1 , h 2 ) ∣ h 1 ∈ H 1 , h 2 ∈ H 2 } , ⋅ ) , G=\big(\{(h_1,h_2)|h_1\in H_1,h_2\in H_2\},\cdot\big), G=({(h1,h2)∣h1∈H1,h2∈H2},⋅),
定义运算:
( h 1 , h 2 ) ⋅ ( g 1 , g 2 ) ≜ ( h 1 g 1 , h 2 g 2 ) , ∀ h 1 , g 1 ∈ H 1 , h 2 , g 2 ∈ H 2 . (h_1,h_2)\cdot(g_1,g_2)\triangleq(h_1g_1,h_2g_2),\quad \forall h_1,g_1\in H_1,h_2,g_2\in H_2. (h1,h2)⋅(g1,g2)≜(h1g1,h2g2),∀h1,g1∈H1,h2,g2∈H2.
并且有:
H 1 × { e 2 } = { ( h 1 , e 2 ) ∣ ∀ h 1 ∈ H 1 , e 2 ∈ H 2 } ≅ H 1 ⊴ G . H_1\times\{e_2\}=\{(h_1,e_2)|\forall h_1\in H_1,e_2\in H_2\}\cong H_1\unlhd G. H1×{e2}={(h1,e2)∣∀h1∈H1,e2∈H2}≅H1⊴G.
内直积
与外直积相反, G G G是一个群, 如果 H 1 , H 2 ⊴ G H_1,H_2\unlhd G H1,H2⊴G且 H 1 ∩ H 2 = { e } H_1\cap H_2=\{e\} H1∩H2={e}, G = H 1 H 2 G=H_1H_2 G=H1H2, 则称 G ≅ H 1 × H 2 G\cong H_1\times H_2 G≅H1×H2.
证明:
∀ g ∈ G , g = h 1 h 2 \forall g\in G,g=h_1h_2 ∀g∈G,g=h1h2, 其中 h 1 ∈ H 1 , h 2 ∈ H 2 h_1\in H_1,h_2\in H_2 h1∈H1,h2∈H2;
H 1 ∩ H 2 = { e } H_1\cap H_2=\{e\} H1∩H2={e} 上面的表示方法唯一.
若不然, g = h 1 h 2 = g 1 g 2 g=h_1h_2=g_1g_2 g=h1h2=g1g2, 两边左乘 g 1 − 1 g_1^{-1} g1−1,右乘 h 2 − 1 h_2^{-1} h2−1, 得到
H 1 ∋ g 1 − 1 h 1 = g 2 h 2 − 1 ∈ H 2 , ⟺ g 1 − 1 h 1 = g 2 h 2 − 1 = e . H_1\ni g_1^{-1}h_1=g_2h_2^{-1}\in H_2,\iff g_1^{-1}h_1=g_2h_2^{-1}=e. H1∋g1−1h1=g2h2−1∈H2,⟺g1−1h1=g2h2−1=e.于是 H 1 × H 2 ⟶ G : ( h 1 , h 2 ) ⟼ h 1 h 2 H_1\times H_2\longrightarrow G:(h_1,h_2)\longmapsto h_1h_2 H1×H2⟶G:(h1,h2)⟼h1h2.
直积的意义:
G = H 1 × H 2 , G > H 1 > { i d } , ⟺ G / H 1 ≅ H 2 . G= H_1\times H_2, G>H_1>\{{\rm id}\},\iff G/H_1\cong H_2. G=H1×H2,G>H1>{id},⟺G/H1≅H2.
例子:
S 3 × S 3 \mathcal{S}_3\times \mathcal{S}_3 S3×S3,(36阶群) 则
S 3 ≅ ( { ( a , a ) ∣ a ∈ S 3 } , ⋅ ) ≅ S 3 × { ( 1 ) } = { ( 1 ) } × S 3 \mathcal{S}_3\cong\big(\{(a,a)|a\in\mathcal{S}_3\},\cdot\big)\\ \qquad\quad\cong\mathcal{S}_3\times \{(1)\}=\{(1)\}\times \mathcal{S}_3 S3≅({(a,a)∣a∈S3},⋅)≅S3×{(1)}={(1)}×S3
第一行不是 S 3 × S 3 \mathcal{S}_3\times \mathcal{S}_3 S3×S3的正规子群, 但是第二行是.
例子:(交换群, 等价于 d i d_i di阶循环群的直积)
G = C d 1 × ⋯ × C d n , C d ≅ ( Z / d Z , + ) = ⟨ g ⟩ , g d = e . G=C_{d_1}\times\cdots \times C_{d_n},\quad C_{d}\cong(\mathbb{Z}/d\mathbb{Z},+)=\langle g\rangle,\quad g^d=e. G=Cd1×⋯×Cdn,Cd≅(Z/dZ,+)=⟨g⟩,gd=e.
对于具体的例子: C 4 × C 8 C_4\times C_8 C4×C8,
有几个4阶群, 有几个8阶群?
Sol.
通过循环群的定义计算,
半直积
H 1 ⊴ G , G / H 1 ≅ H 2 H_1\unlhd G,G/H_1\cong H_2 H1⊴G,G/H1≅H2, 则 G = H 1 ⋉ H 2 G=H_1\ltimes H_2 G=H1⋉H2.
- 如果 H 1 , H 2 H_1,H_2 H1,H2为循环群, G G G称为亚循环群.
可解群
正规子群链:
G = G 0 ⊃ G 1 ⊃ ⋯ G i ⊃ G i + 1 ⊃ ⋯ ⊃ G n = { e } , G=G_0\supset G_1\supset \cdots G_i\supset G_{i+1}\supset \cdots\supset G_n=\{e\}, G=G0⊃G1⊃⋯Gi⊃Gi+1⊃⋯⊃Gn={e},
其中 G i ⊴ G i − 1 G_i\unlhd G_{i-1} Gi⊴Gi−1.
合成群链(中间的任意两个商群都是单群, 或者中间找不到子群, 使正规子群链成立)
-
循环群的合成群链:
由循环群结构定理:
G ≅ C n ≅ ( Z / n Z , + ) , ∀ m ∣ n , ( m Z / n Z , + ) , G\cong C_n\cong (\mathbb{Z}/n\mathbb{Z},+), \forall m|n, (m\mathbb{Z}/n\mathbb{Z},+), G≅Cn≅(Z/nZ,+),∀m∣n,(mZ/nZ,+),
得到: 若 n = p 1 ⋯ p s n=p_1\cdots p_s n=p1⋯ps, 则有
G = Z / n Z > p 1 Z / n Z > p 1 p 2 Z / n Z > ⋯ > p 1 ⋯ p s Z / n Z = { e } . G=\mathbb{Z}/n\mathbb{Z}>p_1\mathbb{Z}/n\mathbb{Z}>p_1p_2\mathbb{Z}/n\mathbb{Z}>\cdots>p_1\cdots p_s\mathbb{Z}/n\mathbb{Z}=\{e\}. G=Z/nZ>p1Z/nZ>p1p2Z/nZ>⋯>p1⋯psZ/nZ={e}. -
交换群的合成群链:
由交换群结构定理,
G ≅ Z / d 1 Z × Z / d 2 Z × ⋯ × Z / d n Z , d 1 ∣ d 2 , ⋯ , d n − 1 ∣ d n , G\cong \mathbb{Z}/d_1\mathbb{Z}\times \mathbb{Z}/d_2\mathbb{Z}\times\cdots\times \mathbb{Z}/d_n\mathbb{Z}, \quad d_1|d_2,\cdots,d_{n-1}|d_n, G≅Z/d1Z×Z/d2Z×⋯×Z/dnZ,d1∣d2,⋯,dn−1∣dn,
于是我们有
G > Z / d 1 Z × ⋯ × Z / d n − 1 Z × { 1 } > ⋯ > Z / d 1 Z × { 1 } × ⋯ × { 1 } ⏟ n − 1 个 > { 1 } G>\mathbb{Z}/d_1\mathbb{Z}\times\cdots\times \mathbb{Z}/d_{n-1}\mathbb{Z}\times\{1\}>\cdots>\mathbb{Z}/d_1\mathbb{Z}\times\underbrace{\{1\}\times\cdots\times\{1\}}_{n-1个}>\{1\} G>Z/d1Z×⋯×Z/dn−1Z×{1}>⋯>Z/d1Z×n−1个 {1}×⋯×{1}>{1} -
p-群的合成群链:
G G G不交换, 则 Z ( G ) ≠ { 1 } \mathbb{Z}(G)\ne\{1\} Z(G)={1},
G > Z ( G ) > { 1 } . G>\mathbb{Z}(G)>\{1\}. G>Z(G)>{1}.
即 ∣ G ∣ = p n |G|=p^n ∣G∣=pn,
G > G 1 > ⋯ > G n = { 1 } G>G_1>\cdots>G_n=\{1\} G>G1>⋯>Gn={1}
其中 ∣ G i ∣ = p n − i |G_i|=p^{n-i} ∣Gi∣=pn−i,G G G交换, 直接由上述讨论得到.
G G G可解 ⟺ G i / G i + 1 \iff G_{i}/G_{i+1} ⟺Gi/Gi+1为素数阶循环群.
应用Sylow定理:
p a q p^aq paq阶群必可解( p , q p,q p,q为素数, a ∈ Z a\in \mathbb{Z} a∈Z).
证明:
具体的例子: 56 = 2 3 ⋅ 7 56=2^3\cdot7 56=23⋅7, 只有如下几种可能.(由Sylow第三定理)
n 2 = 1 , 7 n 7 = 1 , 8 n_2=1,7\\ n_7=1,8 n2=1,7n7=1,8
如果 n 7 = 8 n_7=8 n7=8, 则有8个7阶子群, 设为 ⟨ g 1 ⟩ , ⋯ , ⟨ g 8 ⟩ \langle g_1\rangle,\cdots,\langle g_8\rangle ⟨g1⟩,⋯,⟨g8⟩, 每个7阶子群有6个7阶元(以及1个单位元)
于是 56 − 6 × 8 = 8 56-6\times8=8 56−6×8=8还剩下8个元素(减掉48个7阶元), 这8个元素构成了Sylow-2群(除单位元之外, 剩下元素都是8阶元),
- ( 8 , 7 ) = 1 (8,7)=1 (8,7)=1, 于是sylow-2群没有7阶元(由Lagrange定理), 这8个非7阶元构成唯一的Sylow-2群, 于是 n 2 = 1 n_2=1 n2=1, 设此sylow-2群为 H H H, 则
G ⊵ H > { e } , ∣ H ∣ = 8. G\unrhd H>\{e\}, |H|=8. G⊵H>{e},∣H∣=8.
于是56阶群可解.
自由群
商群表示
相关文章:
代数学笔记9: 群的直积,可解群,自由群,群表示
群的直积 外直积 H 1 , H 2 H_1,H_2 H1,H2是两个群(固定的群), 且有 G H 1 H 2 GH_1\times H_2 GH1H2,(构造的新群) G ( { ( h 1 , h 2 ) ∣ h 1 ∈ H 1 , h 2 ∈ H 2 } , ⋅ ) , G\big(\{(h_1,h_2)|h_1\in H_1,h_2\in H_2\},\cdot\big), G({(h1,h2)∣h1∈H…...
kali学习
目录 黑客法则: 一:页面使用基础 二:msf和Windows永恒之蓝漏洞 kali最强渗透工具——metasploit 介绍 使用永恒之蓝进行攻击 编辑 使用kali渗透工具生成远程控制木马 渗透测试——信息收集 域名信息收集 黑客法则: 一&…...
《论文阅读》DualGATs:用于对话中情绪识别的双图注意力网络
《论文阅读》DualGATs:用于会话中情感识别的双图注意力网络 前言摘要模型架构DisGAT图构建图关系类型图节点更新SpkGAT图构建图关系类型图节点更新交互模块情绪预测损失函数问题前言 今天为大家带来的是《DualGATs: Dual Graph Attention Networks...
【算法】单调栈题单——字典序最小⭐(一种类型的模板题)
文章目录 题目列表316. 去除重复字母⭐⭐⭐⭐⭐(类型题模板:单调栈,字典序最小)221021天池-03. 整理书架(保留数量为 limit 的字典序最小)402. 移掉 K 位数字(最多删除 k 次 前导零的处理&…...
DockerCompose修改某个服务的配置(添加或编辑端口号映射)后如何重启单个服务使其生效
场景 docker-compose入门以及部署SpringBootVueRedisMysql(前后端分离项目)以若依前后端分离版为例: docker-compose入门以及部署SpringBootVueRedisMysql(前后端分离项目)以若依前后端分离版为例_docker-compose部署java mysql redis-CSDN博客 上面讲了docker c…...
DOM 事件的传播机制
前端面试大全DOM 事件的传播机制 🌟经典真题 🌟事件与事件流 事件流 事件冒泡流 事件捕获流 标准 DOM 事件流 🌟事件委托 🌟真题解答 🌟总结 🌟经典真题 谈一谈事件委托以及冒泡原理 dz…...
(数据结构)顺序表的查找
静态分配代码: #include<stdio.h> #include<stdlib.h> #define MAX 100 typedef struct LinkList {int data[MAX];int lenth; }Link; //初始化 void CreateList(Link* L) {L->lenth 0;for (int i 0; i < MAX; i){L->data[i] 0;} } //插入 …...
vue 解决响应大数据表格渲染崩溃问题
如果可以实现记得点赞分享,谢谢老铁~ 1.场景描述 发起请求获取上万条数据,进行表格渲染,使浏览器卡顿,导致网页崩溃。 2.分析原因 1.大量数据加载,过多操作Dom,消耗性能。 2.表格中包含其他…...
Hdoop学习笔记(HDP)-Part.13 安装Ranger
目录 Part.01 关于HDP Part.02 核心组件原理 Part.03 资源规划 Part.04 基础环境配置 Part.05 Yum源配置 Part.06 安装OracleJDK Part.07 安装MySQL Part.08 部署Ambari集群 Part.09 安装OpenLDAP Part.10 创建集群 Part.11 安装Kerberos Part.12 安装HDFS Part.13 安装Ranger …...
Spring AOP记录接口访问日志
Spring AOP记录接口访问日志 介绍应用范围组成通知(Advice)连接点(JoinPoint)切点(Pointcut)切面(Aspect)引入(Introduction)织入(Weaving&#x…...
分享89个节日PPT,总有一款适合您
分享89个节日PPT,总有一款适合您 89个节日PPT下载链接:https://pan.baidu.com/s/1j6Yj-7UCcUyV4V_S_eGjpQ?pwd6666 提取码:6666 Python采集代码下载链接:采集代码.zip - 蓝奏云 学习知识费力气,收集整理更不易…...
PostgreSQL日志中的SQL记录时机 —— log_statement 和 log_min_duration_statement
最近跟朋友讨论到PostgreSQL日志中的SQL记录时机,研究了下log_statement 和 log_min_duration_statement两个参数,记录一下。 一、 参数简介 1. log_statement ① 作用 控制记录SQL的类型,可选值为: none:关闭&…...
Agent举例与应用
什么是Agent OpenAI 应用研究主管 Lilian Weng 在一篇长文中提出了 Agent LLM(大型语言模型)记忆规划技能工具使用这一概念,并详细解释了Agent的每个模块的功能。她对Agent未来的应用前景充满信心,但也表明到挑战无处不在。 现…...
CentOS 7 配置tomcat
简介 Tomcat是一个使用Java编写的开源Web应用服务器,是由Apache Software Foundation管理的一个项目。它是一个轻量级的应用服务器,可以下载、安装和使用,而且还提供了许多高级功能,例如支持Java Servlet、JavaServer Pages (JSP)和JavaServer Faces (JSF) 等JavaEE技术,…...
如何优雅的关闭一个IIS站点
众所周知,当我们使用IIS的时候,在使用负载均衡的情况下,想停掉一个站点,通常会点击Sites(网站)中的Stop(停止)来停止一个站点。但是这样做,会带来一个问题,当…...
弱网模拟工具
一、背景 一个人晚上在家通过 Wi-Fi 上网,在线电影播放基本流畅,可一旦在晚间用网高峰期打视频电话就画面糊,这时不仅可能带宽受限了,还可能有较高的丢包率。与有线网络通信相比,无线网络通信受环境影响会更大&#x…...
Leetcode 第 110 场双周赛 Problem D 2809. 使数组和小于等于 x 的最少时间(DP+贪心+正难则反)
Leetcode 第 110 场双周赛 Problem D 2809. 使数组和小于等于 x 的最少时间(DP 好题)题目 给你两个长度相等下标从 0 开始的整数数组 nums1 和 nums2 。每一秒,对于所有下标 0 < i < nums1.length ,nums1[i] 的值都增加 num…...
已知数组A[1..n]中元素类型为非负整数,设计算法将其调整为左右两部分,左边所有为奇数,右边所有为偶数,并要求算法的时间复杂度为O(n)
//左边奇数右边偶数 void Swap(int* a, int* b) {int tmp *b;*b *a;*a tmp; } void LeftRight(int arr[],int n) {int i 0;int j n - 1;while(i<j){if (arr[i] % 2 0 && arr[j] % 2 1) {Swap(&arr[i], &arr[j]);i;j--;}else if (arr[i] % 2 1 &…...
ssm+vue的罪犯信息管理系统(有报告)。Javaee项目,ssm vue前后端分离项目。
演示视频: ssmvue的罪犯信息管理系统(有报告)。Javaee项目,ssm vue前后端分离项目。 项目介绍: 采用M(model)V(view)C(controller)三层体系结构&…...
Java/Android 各类型数据构造和各类型数据解析
Java/Android 各类型数据构造和各类型数据解析 1.如何构造/解析{"key":"value","key":"value","key":"value"}jsonString1)json解析2)fastjson解析3)Gson解析4)遍历key值解析2.如何构造/解析[{"key&q…...
OpenLayers 可视化之热力图
注:当前使用的是 ol 5.3.0 版本,天地图使用的key请到天地图官网申请,并替换为自己的key 热力图(Heatmap)又叫热点图,是一种通过特殊高亮显示事物密度分布、变化趋势的数据可视化技术。采用颜色的深浅来显示…...
鸿蒙中用HarmonyOS SDK应用服务 HarmonyOS5开发一个医院查看报告小程序
一、开发环境准备 工具安装: 下载安装DevEco Studio 4.0(支持HarmonyOS 5)配置HarmonyOS SDK 5.0确保Node.js版本≥14 项目初始化: ohpm init harmony/hospital-report-app 二、核心功能模块实现 1. 报告列表…...
论文解读:交大港大上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架(一)
宇树机器人多姿态起立控制强化学习框架论文解析 论文解读:交大&港大&上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架(一) 论文解读:交大&港大&上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化…...
C# 类和继承(抽象类)
抽象类 抽象类是指设计为被继承的类。抽象类只能被用作其他类的基类。 不能创建抽象类的实例。抽象类使用abstract修饰符声明。 抽象类可以包含抽象成员或普通的非抽象成员。抽象类的成员可以是抽象成员和普通带 实现的成员的任意组合。抽象类自己可以派生自另一个抽象类。例…...
Linux-07 ubuntu 的 chrome 启动不了
文章目录 问题原因解决步骤一、卸载旧版chrome二、重新安装chorme三、启动不了,报错如下四、启动不了,解决如下 总结 问题原因 在应用中可以看到chrome,但是打不开(说明:原来的ubuntu系统出问题了,这个是备用的硬盘&a…...
【RockeMQ】第2节|RocketMQ快速实战以及核⼼概念详解(二)
升级Dledger高可用集群 一、主从架构的不足与Dledger的定位 主从架构缺陷 数据备份依赖Slave节点,但无自动故障转移能力,Master宕机后需人工切换,期间消息可能无法读取。Slave仅存储数据,无法主动升级为Master响应请求ÿ…...
佰力博科技与您探讨热释电测量的几种方法
热释电的测量主要涉及热释电系数的测定,这是表征热释电材料性能的重要参数。热释电系数的测量方法主要包括静态法、动态法和积分电荷法。其中,积分电荷法最为常用,其原理是通过测量在电容器上积累的热释电电荷,从而确定热释电系数…...
虚拟电厂发展三大趋势:市场化、技术主导、车网互联
市场化:从政策驱动到多元盈利 政策全面赋能 2025年4月,国家发改委、能源局发布《关于加快推进虚拟电厂发展的指导意见》,首次明确虚拟电厂为“独立市场主体”,提出硬性目标:2027年全国调节能力≥2000万千瓦࿰…...
Golang——9、反射和文件操作
反射和文件操作 1、反射1.1、reflect.TypeOf()获取任意值的类型对象1.2、reflect.ValueOf()1.3、结构体反射 2、文件操作2.1、os.Open()打开文件2.2、方式一:使用Read()读取文件2.3、方式二:bufio读取文件2.4、方式三:os.ReadFile读取2.5、写…...
根目录0xa0属性对应的Ntfs!_SCB中的FileObject是什么时候被建立的----NTFS源代码分析--重要
根目录0xa0属性对应的Ntfs!_SCB中的FileObject是什么时候被建立的 第一部分: 0: kd> g Breakpoint 9 hit Ntfs!ReadIndexBuffer: f7173886 55 push ebp 0: kd> kc # 00 Ntfs!ReadIndexBuffer 01 Ntfs!FindFirstIndexEntry 02 Ntfs!NtfsUpda…...
