当前位置: 首页 > news >正文

少走弯路:OpenCV、insightface 等多方案人脸推理和识别

脑壳有包又花时间折腾了一下,其实之前也折腾过,主要是新看了一个方法

在下图中查找脸部

第一种方案:

使用了opencv 的cv2.FaceDetectorYN. ,完整代码如下:

import numpy as np
import cv2img=cv2.imread("00000523.jpg")
# img=cv2.resize(img, new_shape)
faceDetector=cv2.FaceDetectorYN.create("opencv_zoo/models/face_detection_yunet/face_detection_yunet_2023mar.onnx","",(img.shape[1],img.shape[0]))
faces = faceDetector.detect(img)
f = faces[1]
for ps in f:x=int(ps[0])y=int(ps[1])w=int(ps[2])h=int(ps[3])s=ps[14]# print(x,y,w,h,s)cv2.rectangle(img, (x, y), (x+w, y+h), (0,0,255), 2)
cv2.namedWindow("d",0);
cv2.resizeWindow("d", int(img.shape[1]/2), int(img.shape[0]/2));
cv2.imshow("d",img)
cv2.waitKey()
# cv2.destoryAllWindows()
cv2.destroyAllWindows()

结果如下:

第二种方案:

使用了 cv2.CascadeClassifier("D:\\opencv-4.52\\data\\haarcascades\\haarcascade_frontalface_default.xml")

import numpy as np
import cv2img=cv2.imread("00000523.jpg")
cas_default = cv2.CascadeClassifier("D:\\opencv-4.52\\data\\haarcascades\\haarcascade_frontalface_default.xml")
faces_default = cas_default.detectMultiScale(img)
for (x,y,w,h) in faces_default:print(x,y,w,h)cv2.rectangle(img, (x, y), (x+w, y+h), (0,255,255), 2)
cv2.namedWindow("d",0);
cv2.resizeWindow("d", int(img.shape[1]/2), int(img.shape[0]/2));
cv2.imshow("d",img)
cv2.waitKey()
# cv2.destoryAllWindows()
cv2.destroyAllWindows()

结果如下:

以上两种都是opencv的自带方案,要么找脸不全,要么错误的找脸

然后是insightface 的方案:

import insightface
import cv2
import numpy as npmodel = insightface.app.FaceAnalysis()
model.prepare(ctx_id=0, det_thresh=0.45)face_img = cv2.imread('00000523.jpg')
rgb_small_frame = face_img[:, :, ::-1]
faces = model.get(rgb_small_frame)for r in faces:box=r.bbox.astype(int)color=(0, 0, 255)cv2.rectangle(face_img, (box[0], box[1]), (box[2], box[3]), color, 2)
cv2.namedWindow("d",0);
cv2.resizeWindow("d", int(face_img.shape[1]/2), int(face_img.shape[0]/2));
cv2.imshow("d",face_img)
cv2.waitKey()
cv2.destroyAllWindows()

汇总的就是: insightface  脸部的查找最好,稍微有点慢,不知道是不是因为推理了年龄和性别。用insightface  推理出来的脸部数据,来识别具体人物的准确度也很高。

这是原图:

对于推理出来的人脸进行分别标记,对应到一个数据集:

参照标记的脸部数据,对其他照片进行推理,以下是结果,就不贴代码了:

以下结果展示了不同角度下,都给了一个准确的结果。不要介意对于性别和年龄的推断,可能同亚洲和欧洲人种数据集有关系。

带了墨镜居然都有一个准确结果

相关文章:

少走弯路:OpenCV、insightface 等多方案人脸推理和识别

脑壳有包又花时间折腾了一下,其实之前也折腾过,主要是新看了一个方法 在下图中查找脸部 第一种方案: 使用了opencv 的cv2.FaceDetectorYN. ,完整代码如下: import numpy as np import cv2imgcv2.imread("00000…...

github代码连接vercel 建立一个公用网站

Deploying to the Cloud using Vercel 前置任务 建立一个基于flask的web app代码库并上传至github repo Vercel用途 vercel有点像一个免费的cloud server,帮助你将flask框架下的程序运行在云端。可以public访问。 deploy流程 在主文件夹中建立requirements.tx…...

使用pandas将字符串格式数据转换为单独的行

有时在处理数据时,可能会遇到这样的情况,即数据框中的整个字符串条目需要拆分到不同的行中。这可能是一项具有挑战性的任务,特别是当数据庞大而复杂时。尽管如此,一个名为pandas的Python库提供了各种函数,使用这些函数…...

【Tkinter 入门教程】

【Tkinter 入门教程】 1. Tkinter库的简介:1.1 GUI编程1.2 Tkinter的定位 2. Hello word! 程序起飞2.1 第⼀个程序2.2 字体颜色主题 3. 组件讲解3.1 tkinter 的核⼼组件3.2 组件的使⽤3.3 标签Label3.3.1 标签显示内容3.3.2 多标签的应⽤程序3.3.3 总结 3.4 按钮but…...

深入理解Java中继承的高级使用方案

摘要: 继承是Java中的一项强大的特性,它允许子类从父类中继承属性和方法。然而,继承的高级使用方案涉及更复杂的概念和技术,可以帮助开发人员构建更加灵活、可维护和可扩展的代码。本文将深入探讨Java中继承的高级用法&#xff0c…...

nexus私服开启HTTPS

maven3.8.1以上不允许使用HTTP服务的仓库地址,如果自己搭建的私服需要升级为HTTPS或做一些设置,如果要升级HTTPS服务有两种方式:1、使用Nginx开启HTTPS并反向代理nexus;2、直接在nexus开启HTTPS。这里介绍第二种方式 1、在ssl目录…...

融合CFPNet的EVC-Block改进YOLO的太阳能电池板缺陷检测系统

1.研究背景与意义 项目参考AAAI Association for the Advancement of Artificial Intelligence 研究背景与意义 随着太阳能电池板的广泛应用,对其质量和性能的要求也越来越高。然而,由于生产过程中的各种因素,太阳能电池板上可能存在各种缺…...

传媒行业CRM:打造高效客户管理,提升品牌影响力

传媒行业充满竞争和变化,传媒企业面临着客户管理不透明、业务流程混乱、销售数据分析不足,无法优化营销策略和运营管理等问题。CRM系统是企业实现数智化管理的神器,可以有效解决这些问题。下面说说,传媒行业CRM系统推荐。 1、建立…...

基于深度学习的肺炎CT图像检测诊断系统

欢迎大家点赞、收藏、关注、评论啦 ,由于篇幅有限,只展示了部分核心代码。 文章目录 一项目简介 二、功能三、系统四. 总结 一项目简介 深度学习在肺炎CT图像检测诊断方面具有广泛的应用前景。以下是关于肺炎CT图像检测诊断系统的介绍: 任务…...

YOLOv8改进 | 2023 | SCConv空间和通道重构卷积(精细化检测,又轻量又提点)

一、本文介绍 本文给大家带来的改进内容是SCConv,即空间和通道重构卷积,是一种发布于2023.9月份的一个新的改进机制。它的核心创新在于能够同时处理图像的空间(形状、结构)和通道(色彩、深度)信息&#xf…...

Python 全栈体系【四阶】(一)

四阶:机器学习 - 深度学习 第一章 numpy 一、numpy 概述 Numerical Python,数值的 Python,补充了 Python 语言所欠缺的数值计算能力。 Numpy 是其它数据分析及机器学习库的底层库。 Numpy 完全标准 C 语言实现,运行效率充分优…...

Git【成神路】

目录 1.为啥要学git啊?😕😕😕 2.版本控制软件的基本功能 🤞🤞🤞 3.集中式版本控制 🤶🤶🤶 4.分布式版本控制😎😎😎 …...

文件操作详解

文件操作详解 一:文件相关概念1:问什么使用文件2:什么是文件???2.1:程序文件2.2数据文件 二:文件的打开和关闭1:流的定义2:标准流3:文件指针 一&a…...

模块 A:web理论测试

模块 A:理论测试 任务一:单选题 1.为 EMP 表的 namesalary 字段创建名为 emp name salary idx 的校复习接课 name 字段升序, salary 字段降序的复合索引的 SQL 语句是? B A: CREATEINDEX emp name salary idx ON EMP(namesalary) B: …...

git rebase冲突说明(base\remote\local概念说明)

主线日志及修改 $ git log master -p commit 31213fad6150b9899c7e6b27b245aaa69d2fdcff (master) Author: Date: Tue Nov 28 10:19:53 2023 08004diff --git a/123.txt b/123.txt index 294d779..a712711 100644 --- a/123.txtb/123.txt-1,3 1,4 123 4^Mcommit a77b518156…...

函数式接口的妙用,让异步执行更简单

你是否曾经遇到过在SpringBoot中Async注解无法正常工作的问题?今天,我们用函数式接口来解决这个问题。 一、什么是函数式接口? 函数式接口(Functional Interface)是 Java 8 中引入的一个概念,是指只包含一…...

读书笔记:《More Effective C++》

More Effective C Basics reference & pointer reference 必定有值,pointer 可以为空reference 声明时必须定义,必须初始化reference 无需测试有效性,pointer 必须测试是否为 nullreference 可以更改指向对象的值,但是无法…...

手写VUE后台管理系统6 - 支持TS声明文件.d.ts

TS 使用声明文件进行类型定义。 配置 在 tsconfig.json 文件中,找到 include 属性,添加 "src/**/*.d.ts",表示 src 目录下的所有 .d.ts 文件都会被自动加载。 添加后内容如下 "include": ["src/**/*.ts",&…...

第八天:信息打点-系统端口CDN负载均衡防火墙

信息打点-系统篇&端口扫描&CDN服务&负载均衡&WAF防火墙 一、知识点 1、获取网络信息-服务器厂商: 阿里云,腾讯云,机房内部等。 网络架构: 内外网环境。 2、获取服务信息-应用协议-内网资产: FTP…...

一款充电桩解决方案设计

一、基本的概述 项目由IP6536提供两路5V 1.5A 的USB充电口,IP6505提供一路最大24W的USB快充口支持QC3.0 / DCP / QC2.0 / MTK PE1.1 / PE2.0 / FCP / SCP / AFC / SFCP的快充协议,电池充电由type-C输入经过IP2326输出最高15W快充对电池进行充电&#xf…...

Prompt Tuning、P-Tuning、Prefix Tuning的区别

一、Prompt Tuning、P-Tuning、Prefix Tuning的区别 1. Prompt Tuning(提示调优) 核心思想:固定预训练模型参数,仅学习额外的连续提示向量(通常是嵌入层的一部分)。实现方式:在输入文本前添加可训练的连续向量(软提示),模型只更新这些提示参数。优势:参数量少(仅提…...

Golang dig框架与GraphQL的完美结合

将 Go 的 Dig 依赖注入框架与 GraphQL 结合使用,可以显著提升应用程序的可维护性、可测试性以及灵活性。 Dig 是一个强大的依赖注入容器,能够帮助开发者更好地管理复杂的依赖关系,而 GraphQL 则是一种用于 API 的查询语言,能够提…...

oracle与MySQL数据库之间数据同步的技术要点

Oracle与MySQL数据库之间的数据同步是一个涉及多个技术要点的复杂任务。由于Oracle和MySQL的架构差异,它们的数据同步要求既要保持数据的准确性和一致性,又要处理好性能问题。以下是一些主要的技术要点: 数据结构差异 数据类型差异&#xff…...

苍穹外卖--缓存菜品

1.问题说明 用户端小程序展示的菜品数据都是通过查询数据库获得,如果用户端访问量比较大,数据库访问压力随之增大 2.实现思路 通过Redis来缓存菜品数据,减少数据库查询操作。 缓存逻辑分析: ①每个分类下的菜品保持一份缓存数据…...

Matlab | matlab常用命令总结

常用命令 一、 基础操作与环境二、 矩阵与数组操作(核心)三、 绘图与可视化四、 编程与控制流五、 符号计算 (Symbolic Math Toolbox)六、 文件与数据 I/O七、 常用函数类别重要提示这是一份 MATLAB 常用命令和功能的总结,涵盖了基础操作、矩阵运算、绘图、编程和文件处理等…...

【Java_EE】Spring MVC

目录 Spring Web MVC ​编辑注解 RestController RequestMapping RequestParam RequestParam RequestBody PathVariable RequestPart 参数传递 注意事项 ​编辑参数重命名 RequestParam ​编辑​编辑传递集合 RequestParam 传递JSON数据 ​编辑RequestBody ​…...

USB Over IP专用硬件的5个特点

USB over IP技术通过将USB协议数据封装在标准TCP/IP网络数据包中,从根本上改变了USB连接。这允许客户端通过局域网或广域网远程访问和控制物理连接到服务器的USB设备(如专用硬件设备),从而消除了直接物理连接的需要。USB over IP的…...

Vite中定义@软链接

在webpack中可以直接通过符号表示src路径,但是vite中默认不可以。 如何实现: vite中提供了resolve.alias:通过别名在指向一个具体的路径 在vite.config.js中 import { join } from pathexport default defineConfig({plugins: [vue()],//…...

毫米波雷达基础理论(3D+4D)

3D、4D毫米波雷达基础知识及厂商选型 PreView : https://mp.weixin.qq.com/s/bQkju4r6med7I3TBGJI_bQ 1. FMCW毫米波雷达基础知识 主要参考博文: 一文入门汽车毫米波雷达基本原理 :https://mp.weixin.qq.com/s/_EN7A5lKcz2Eh8dLnjE19w 毫米波雷达基础…...

[论文阅读]TrustRAG: Enhancing Robustness and Trustworthiness in RAG

TrustRAG: Enhancing Robustness and Trustworthiness in RAG [2501.00879] TrustRAG: Enhancing Robustness and Trustworthiness in Retrieval-Augmented Generation 代码:HuichiZhou/TrustRAG: Code for "TrustRAG: Enhancing Robustness and Trustworthin…...