智能优化算法应用:基于瞬态优化算法无线传感器网络(WSN)覆盖优化 - 附代码
智能优化算法应用:基于瞬态优化算法无线传感器网络(WSN)覆盖优化 - 附代码
文章目录
- 智能优化算法应用:基于瞬态优化算法无线传感器网络(WSN)覆盖优化 - 附代码
- 1.无线传感网络节点模型
- 2.覆盖数学模型及分析
- 3.瞬态优化算法
- 4.实验参数设定
- 5.算法结果
- 6.参考文献
- 7.MATLAB代码
摘要:本文主要介绍如何用瞬态优化算法进行无线传感器网(WSN)覆盖优化。
1.无线传感网络节点模型
本文主要基于0/1模型,进行寻优。在二维平面上传感器节点的感知范围是一个以节点为圆心,半径为 R n R_n Rn的圆形区域,该圆形区域通常被称为该节点的“感知圆盘”, R n R_n Rn称为传感器节点的感知半径,感知半径与节点内置传感器件的物理特性有关,假设节点 n n n的位置坐标为 ( x n , y n ) (x_n,y_n) (xn,yn)在0-1感知模型中,对于平面上任意一点 p ( x p , y p ) p(x_p,y_p) p(xp,yp),则节点 n n n监测到区域内点 p p p的事件发生概率为:
P r ( n , p ) = { 1 , d ( n , p ) ≤ R n 0 , e s l e (1) P_r(n,p)=\begin{cases}1, \,d(n,p)\leq R_n\\ 0,\, esle \end{cases}\tag{1} Pr(n,p)={1,d(n,p)≤Rn0,esle(1)
其中 d ( n , p ) = ( x n − x p ) 2 + ( y n − y p ) 2 d(n,p)=\sqrt{(x_n-x_p)^2+(y_n-y_p)^2} d(n,p)=(xn−xp)2+(yn−yp)2为点和之间的欧式距离。
2.覆盖数学模型及分析
现假定目标监测区域为二维平面,在区域 A r e a Area Area上投放同型结构传感器节点的数目为N,每个节点的位置坐标值假设已被初始化赋值,且节点的感知半径r。传感器节点集则表示为:
N o d e { x 1 , . . . , x N } (2) Node\{x_1,...,x_N\} \tag{2} Node{x1,...,xN}(2)
其中 n o d e i = { x i , y i , r } node_i=\{x_i,y_i,r\} nodei={xi,yi,r},表示以节点 ( x i , y i ) (x_i,y_i) (xi,yi)为圆心,r为监测半径的圆,假定监测区域 A r e a Area Area被数字化离散为 m ∗ n m*n m∗n个像素点,像素点的坐标为 ( x , y ) (x,y) (x,y),目标像素点与传感器节点间的距离为:
d ( n o d e i , p ) = ( x i − x ) 2 + ( y i − y ) 2 (3) d(node_i,p)=\sqrt{(x_i-x)^2+(y_i-y)^2}\tag{3} d(nodei,p)=(xi−x)2+(yi−y)2(3)
目标区域内像素点被传感器节点所覆盖的事件定义为 c i c_i ci。则该事件发生的概率 P c i P{c_i} Pci即为像素点 ( x , y ) (x,y) (x,y)被传感器节点 n o d e i node_i nodei所覆盖的概率:
P c o v ( x , y , n o d e i ) = { 1 , i f d ( n o d e i , p ) ≤ r 0 , e s l e (4) P_{cov}(x,y,node_i)=\begin{cases}1, if\,d(node_i,p)\leq r\\ 0,\, esle \end{cases}\tag{4} Pcov(x,y,nodei)={1,ifd(nodei,p)≤r0,esle(4)
我们将所有的传感器节点在目标监测环境中的区域覆盖率 C o v e r R a t i o CoverRatio CoverRatio定义为传感器节点集的覆盖面积与监测区域的面积之比,如公式所示:
C o v e r R a t i o = ∑ P c o v m ∗ n (5) CoverRatio = \frac{\sum P_{cov}}{m*n}\tag{5} CoverRatio=m∗n∑Pcov(5)
那我们的最终目标就是找到一组节点使得覆盖率最大。
3.瞬态优化算法
瞬态优化算法原理请参考:https://blog.csdn.net/u011835903/article/details/121303562
该算法是寻找最小值。于是适应度函数定义为未覆盖率最小,即覆盖率最大。如下:
f u n = a r g m i n ( 1 − C o v e r R a t i o ) = a r g m i n ( 1 − ∑ P c o v m ∗ n ) (6) fun = argmin(1 - CoverRatio) = argmin(1-\frac{\sum P_{cov}}{m*n}) \tag{6} fun=argmin(1−CoverRatio)=argmin(1−m∗n∑Pcov)(6)
4.实验参数设定
无线传感器覆盖参数设定如下:
%% 设定WNS覆盖参数,
%% 默认输入参数都是整数,如果想定义小数,请自行乘以系数变为整数再做转换。
%% 比如范围1*1,R=0.03可以转换为100*100,R=3;
%区域范围为AreaX*AreaY
AreaX = 100;
AreaY = 100;
N = 20 ;%覆盖节点数
R = 15;%通信半径
瞬态优化算法参数如下:
%% 设定优化参数
pop=30; % 种群数量
Max_iteration=80; %设定最大迭代次数
lb = ones(1,2*N);
ub = [AreaX.*ones(1,N),AreaY.*ones(1,N)];
dim = 2*N;%维度为2N,N个坐标点
5.算法结果


从结果来看,覆盖率在优化过程中不断上升,表明瞬态优化算法对覆盖优化起到了优化的作用。
6.参考文献
[1] 史朝亚. 基于PSO算法无线传感器网络覆盖优化的研究[D]. 南京理工大学.
7.MATLAB代码
相关文章:
智能优化算法应用:基于瞬态优化算法无线传感器网络(WSN)覆盖优化 - 附代码
智能优化算法应用:基于瞬态优化算法无线传感器网络(WSN)覆盖优化 - 附代码 文章目录 智能优化算法应用:基于瞬态优化算法无线传感器网络(WSN)覆盖优化 - 附代码1.无线传感网络节点模型2.覆盖数学模型及分析3.瞬态优化算法4.实验参数设定5.算法结果6.参考…...
springMVC 三大组件解析
springMVC组件概述 DispatcherServlet(调度器Servlet): DispatcherServlet 是 Spring MVC 的前端控制器(Front Controller)。它负责接收来自客户端的请求,然后将请求分发给相应的处理器(Control…...
聊聊nginx的keepalive_time参数
序 本文主要研究一下nginx的keepalive_time参数 keepalive_time Syntax: keepalive_time time; Default: keepalive_time 1h; Context: http, server, location This directive appeared in version 1.19.10.nginx的1.19.10版本新增了keepalive_time参数,用于限…...
沐风老师3DMAX键盘球建模方法详解
3DMAX键盘球建模教程 本教程给大家分享一个3dMax键盘球的建模方法过程。在学习本教程之前,大家需要对3dMax基本操作及建模知识有所掌握,还是那句话:做实例的前提是选学习基础知识和掌握3dMax的基本操作。 下面就给大家一步一步讲解演示3dMax…...
算法通关村第一关—白银挑战—链表高频面试算法题—查找两个链表的第一个公共子节点
文章目录 查找两个链表的第一个公共子节点(1)暴力求解法(2)使用哈希Hash⭐(3)使用集合⭐ - 与Hash类似(4)使用栈⭐(5)仍有更多方法,作者尚未理解&…...
C/C++ 发送与接收HTTP/S请求
HTTP(Hypertext Transfer Protocol)是一种用于传输超文本的协议。它是一种无状态的、应用层的协议,用于在计算机之间传输超文本文档,通常在 Web 浏览器和 Web 服务器之间进行数据通信。HTTP 是由互联网工程任务组(IETF…...
【算法集训】基础数据结构:一、顺序表(下)
由于今天的题目是昨天剩下的,所以只有两道题,也非常简单,刷完下班~~~嘿嘿 第六题 2656. K 个元素的最大和 https://leetcode.cn/problems/maximum-sum-with-exactly-k-elements/description/ 很简单的思路,要得到得分最大的&…...
[Java][项目][战斗逻辑]基于JFrame的文字游戏
项目注解: Core:启动文件 AttributeBean:玩家属性 BackpackedBean:背包设计(未完成) BackpackedFrame:背包页面(未完成) BattleField:战斗逻辑(核心&…...
顺序表和链表面试题
文章目录 顺序表(1)原地移除数组中所有的元素val,要求时间复杂度为O(N),空间复杂度为O(1)。(2)删除有序数组中的重复项(3)合并两个有序数组 链表(1)删除链表中等于给定值 val 的所有节点(2)反转一个单链表(3) 合并两个有序链表(4)链表的中间结点(5)链表中…...
树_二叉搜索树累加求和
//给出二叉 搜索 树的根节点,该树的节点值各不相同,请你将其转换为累加树(Greater Sum Tree),使每个节点 node 的新值等于原树中大于或等于 // node.val 的值之和。 // // 提醒一下,二叉搜索树满足下列约束…...
gcc编译流程概述
前言 本篇文章介绍gcc编译器编译C文件的流程概述 比如我们创建了一个.c文件hello_gcc.c #include <stdio.h> int main() {printf("Hello gcc!!!\n");return 0; }最简单的方式就是在终端使用命令 gcc hello_gcc.c -o hello_gcc // 编译、汇编、链接 ./hello_…...
【web安全】ssrf漏洞的原理与使用
前言 菜某对ssrf漏洞的总结。 ssrf的作用 主要作用:访问外界无法访问的内网进行信息收集。 1.进行端口扫描,资源访问 2.指纹信息识别,访问相应的默认文件 3.利用漏洞或者和payload进一步运行其他程序 4.get类型漏洞利用,传参数…...
佳易王会员管理软件店铺积分以及积分兑换系统
一、佳易王会员管理软件大众版 部分功能简介: 1、会员信息登记 :可以直接使用手机号登记,也可以使用实体卡片,推荐用手机号即可。 2、会员卡类型 :可以自由设置卡的类型,比如:充值卡、计次卡、…...
Django回顾【二】
目录 一、Web框架 二、WSGI协议 三、 Django框架 1、MVC与MTV模型 2、Django的下载与使用 补充 3、启动django项目 补充 5、 Django请求生命周期 四、路由控制 1、路由是什么? 2、如何使用 3、path详细使用 4、re_path详细使用 5、反向解析 6、路由…...
[Ubuntu 18.04] RK3399搭建SSH服务实现远程访问
SSH(Secure Shell)是一种网络协议和软件,用于安全地远程登录到计算机并进行网络服务的加密通信。它提供了加密的认证和安全的数据传输,使得在不安全的网络中进行远程管理和访问变得更加安全。 以下是 SSH 服务的一些关键特点和用途: 安全认证:SSH 使用公钥/私钥加密技术…...
Linux进程间通信之共享内存
📟作者主页:慢热的陕西人 🌴专栏链接:Linux 📣欢迎各位大佬👍点赞🔥关注🚓收藏,🍉留言 本博客主要内容讲解共享内存原理和相关接口的介绍,以及一个…...
lv11 嵌入式开发 RTC 17
目录 1 RTC简介 编辑2 Exynos4412下的RTC控制器 2.1 概述 2.2 特征 2.3 功能框图 3 寄存器介绍 3.1 概述 3.2 BCD格式的年月日寄存器 3.3 INTP中断挂起寄存器 3.4 RTCCON控制寄存器 3.5 CURTICCNT 作为嘀嗒定时器使用的寄存器 4 RTC编程 5 练习 1 RTC简介 RTC(…...
c语言指针详解(上)
目录 一、指针的基本概念和用法 二、指针运算 2.1 指针的自增和自减运算 2.2 指针的自增和自减运算 三、数组和指针 四、指针和函数 4.1 在函数中使用指针作为参数和返回值 4.1.1 使用指针作为函数参数 4.1.2 使用指针作为函数返回值 4.2 指针参数的传值和传引用特性 4.2.1 指针…...
如何删除mac苹果电脑上面的流氓软件?
在使用苹果电脑的过程中,有时候我们也会遇到一些不需要的软件。无论是因为不再需要,或者是为了释放磁盘空间,删除这些软件是很重要的。本文将为大家介绍怎样删除苹果电脑上的软件! CleanMyMac X全新版下载如下: https://wm.make…...
WordPress(11)给文章添加预计阅读时长
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录 前言一、文件配置二、代码块1.引入库2.配置 single.php三、效果图前言 提示:这里可以添加本文要记录的大概内容: 例如:随着人工智能的不断发展,机器学习这门技术也越来越重要,很多人都开启了…...
浅谈 React Hooks
React Hooks 是 React 16.8 引入的一组 API,用于在函数组件中使用 state 和其他 React 特性(例如生命周期方法、context 等)。Hooks 通过简洁的函数接口,解决了状态与 UI 的高度解耦,通过函数式编程范式实现更灵活 Rea…...
逻辑回归:给不确定性划界的分类大师
想象你是一名医生。面对患者的检查报告(肿瘤大小、血液指标),你需要做出一个**决定性判断**:恶性还是良性?这种“非黑即白”的抉择,正是**逻辑回归(Logistic Regression)** 的战场&a…...
【解密LSTM、GRU如何解决传统RNN梯度消失问题】
解密LSTM与GRU:如何让RNN变得更聪明? 在深度学习的世界里,循环神经网络(RNN)以其卓越的序列数据处理能力广泛应用于自然语言处理、时间序列预测等领域。然而,传统RNN存在的一个严重问题——梯度消失&#…...
TRS收益互换:跨境资本流动的金融创新工具与系统化解决方案
一、TRS收益互换的本质与业务逻辑 (一)概念解析 TRS(Total Return Swap)收益互换是一种金融衍生工具,指交易双方约定在未来一定期限内,基于特定资产或指数的表现进行现金流交换的协议。其核心特征包括&am…...
unix/linux,sudo,其发展历程详细时间线、由来、历史背景
sudo 的诞生和演化,本身就是一部 Unix/Linux 系统管理哲学变迁的微缩史。来,让我们拨开时间的迷雾,一同探寻 sudo 那波澜壮阔(也颇为实用主义)的发展历程。 历史背景:su的时代与困境 ( 20 世纪 70 年代 - 80 年代初) 在 sudo 出现之前,Unix 系统管理员和需要特权操作的…...
自然语言处理——循环神经网络
自然语言处理——循环神经网络 循环神经网络应用到基于机器学习的自然语言处理任务序列到类别同步的序列到序列模式异步的序列到序列模式 参数学习和长程依赖问题基于门控的循环神经网络门控循环单元(GRU)长短期记忆神经网络(LSTM)…...
【Oracle】分区表
个人主页:Guiat 归属专栏:Oracle 文章目录 1. 分区表基础概述1.1 分区表的概念与优势1.2 分区类型概览1.3 分区表的工作原理 2. 范围分区 (RANGE Partitioning)2.1 基础范围分区2.1.1 按日期范围分区2.1.2 按数值范围分区 2.2 间隔分区 (INTERVAL Partit…...
Scrapy-Redis分布式爬虫架构的可扩展性与容错性增强:基于微服务与容器化的解决方案
在大数据时代,海量数据的采集与处理成为企业和研究机构获取信息的关键环节。Scrapy-Redis作为一种经典的分布式爬虫架构,在处理大规模数据抓取任务时展现出强大的能力。然而,随着业务规模的不断扩大和数据抓取需求的日益复杂,传统…...
掌握 HTTP 请求:理解 cURL GET 语法
cURL 是一个强大的命令行工具,用于发送 HTTP 请求和与 Web 服务器交互。在 Web 开发和测试中,cURL 经常用于发送 GET 请求来获取服务器资源。本文将详细介绍 cURL GET 请求的语法和使用方法。 一、cURL 基本概念 cURL 是 "Client URL" 的缩写…...
基于江科大stm32屏幕驱动,实现OLED多级菜单(动画效果),结构体链表实现(独创源码)
引言 在嵌入式系统中,用户界面的设计往往直接影响到用户体验。本文将以STM32微控制器和OLED显示屏为例,介绍如何实现一个多级菜单系统。该系统支持用户通过按键导航菜单,执行相应操作,并提供平滑的滚动动画效果。 本文设计了一个…...
