加州大学伯克利分校研究人员推出Starling-7B:一款通过人工智能反馈强化学习(RLAIF)训练的开源大型语言模型(LLM)
每周跟踪AI热点新闻动向和震撼发展 想要探索生成式人工智能的前沿进展吗?订阅我们的简报,深入解析最新的技术突破、实际应用案例和未来的趋势。与全球数同行一同,从行业内部的深度分析和实用指南中受益。不要错过这个机会,成为AI领域的领跑者。点击订阅,与未来同行! 订阅:https://rengongzhineng.io/
人工智能大型语言模型(LLM)在自然语言处理任务中扮演着重要角色。这些模型通过大量数据集进行训练,能够理解和生成类似人类的文本。它们已经彻底改变了自然语言处理的领域,因为它们能够理解和发展出类人的文本。这些模型在生活的各个领域都有着广泛的应用。
加州大学伯克利分校的研究人员最近推出了一款开源大型语言模型Starling-7B。该模型通过从人工智能反馈中学习强化(RLAIF)进行训练。它不仅利用了我们最新开发的奖励训练和策略调整管道,还结合了新的GPT-4标记排名数据集Nectar以及先进的奖励训练和策略调整管道。
Starling-7B: Increasing LLM Helpfulness & Harmlessness with RLAIF Starling-7B的基础是GPT-4标记排名数据集Nectar。该数据集包含183,000个聊天提示,每个提示提供来自不同模型(如GPT-4、GPT-3.5-instruct、GPT-3.5-turbo、Mistral-7B-Instruct和Llama2-7B)的七种响应,共计380万对比较。为了确保公平性,研究人员在使用GPT-4进行排名时,投入了大量精力来减少位置偏见,这一过程在数据集部分有详细说明。
https://huggingface.co/berkeley-nest/Starling-LM-7B-alpha 他们使用学习奖励模型对Openchat 3.5语言模型进行了改进,并取得了令人印象深刻的成果。AlpacaEval评分从88.51%提高到91.99%,而MT-Bench评分从7.81提高到8.09。这些指标作为标准,评估了聊天机器人的实用性。
研究人员还用直接偏好优化(DPO)方法,将该模型与早期的开源模型(如Zephyra-7B、Neural-Chat-7B和Tulu-2-DPO-70B)进行了测试。尽管这些模型在Chatbot Arena中表现良好,但与顶级的SFT模型(如OpenHermes 2.5和Openchat 3.5)相比,它们还未能完全发挥RLHF的全部潜力。
研究人员强调,该模型还面临一些挑战。它容易受到欺骗或操纵方法的影响。此外,该模型在数学或推理任务上表现不佳,其输出的事实准确性有时也无法保证。他们还指出,该模型偶尔会出现冗长和易受越狱提示的问题。尽管如此,他们仍致力于改进Starling-7B。
为了解决这个问题,他们提出进一步完善该模型,利用基于规则的奖励模型,其中GPT-4作为指导,使用GPT-4技术报告中概述的技术。
总之,Starling-7B代表了LLM领域的重大进步,展示了通过人工智能反馈进行强化学习的可能性。自然语言处理领域因这些模型与社区共享知识的合作而得到增强。研究人员正在努力提高模型的性能并解决其局限性。
相关文章:
加州大学伯克利分校研究人员推出Starling-7B:一款通过人工智能反馈强化学习(RLAIF)训练的开源大型语言模型(LLM)
每周跟踪AI热点新闻动向和震撼发展 想要探索生成式人工智能的前沿进展吗?订阅我们的简报,深入解析最新的技术突破、实际应用案例和未来的趋势。与全球数同行一同,从行业内部的深度分析和实用指南中受益。不要错过这个机会,成为AI领…...
腾讯面试真题(C语言)
一.题目 求123...n,要求不能使用乘除法、for、while、if、else、switch、case等关键字及条件判断语句(A?B:C)。 二.题目剖析 首先题目要求不能用乘除,那么(首相末项)*项数/2就不能用,其次不…...
JavaScript 函数
JavaScript 函数 函数就是封装起来可以被重复使用的代码块 函数的优点 使代码更加简洁方便代码的修改和维护使程序运行更加高效 函数的封装(创建 声明)和调用 封装 通过function关键字封装 function 函数名(参数) {函数体:被封装的代码 }匿名函数 将一个函数直接赋值给一…...
数据结构 | 查漏补缺之DFS、BFS、二次探测再散列法、完全二叉树、深度计算
目录 DFS&BFS 哈希表-二次探测再散列法 完全二叉树&深度计算 排序 快速排序-挖坑法 插入、选择、冒泡、区别 DFS&BFS 哈希表-二次探测再散列法 完全二叉树&深度计算 排序 快速排序-挖坑法 插入、选择、冒泡、区别 插入从第一个元素开始,…...
用python实现单链表的基础操作
1 问题 用python实现单链表的基础操作:插入,删除,遍历,判空,清空链表,求长度,获取元素,判断元素是否存在。 2 方法 解决问题的步骤采用如下方式: 使用函数和类的方法来实…...
[头歌系统数据库实验] 实验3 MySQL的DDL语言
目录 第1关:将P表中的所有红色零件的重量增加6 第2关:把P表中全部红色零件的颜色改成蓝色 第3关:将SPJ表中由S5供给J4的零件P6改为由S3供应 第4关:将SPJ表中所有天津供应商的QTY属性值减少11(用子查询方式&#x…...
系统运维安全之病毒自检及防护
一、前言 Linux勒索病毒(Linux ransomware)是一种最令人恶心的计算机恶意病毒,它以侵入Linux系统,捆绑文件并要求支付赎金才能释放文件为主要目的,破坏用户的数据,造成数据讹诈。Linux勒索病毒它们的存在已…...
Mabatis处理异常屏蔽SQL返回前端全局异常捕获处理
文章目录 Mabatis处理异常屏蔽SQL返回前端全局异常捕获处理结论1 java异常体系2 Spring框架异常处理3 定位Spring框架转化为哪种unchecked异常3.1 捕获RuntimeException定位Spring框架转化抛出的异常类3.2 进一步查看包名判断3.3 识别MyBatisSystemException下级实现3.3 识别My…...
黑豹程序员-java发邮件,发送内容支持html,带多附件的案例
介绍 发邮件mail是常见的软件功能,下面利于spring和java的mail库实现发送内容支持html,带多附件的案例 开启SMTP邮件发送协议 谁提供的SMTP邮件服务,就找谁开启。QQ邮箱类似。 依赖 <!--Java MAil 发送邮件API--><dependency&g…...
[LeetCode] 15. 三数之和
15. 三数之和 给你一个整数数组 nums ,判断是否存在三元组 [nums[i], nums[j], nums[k]] 满足 i ! j、i ! k 且 j ! k ,同时还满足 nums[i] nums[j] nums[k] 0 。请 你返回所有和为 0 且不重复的三元组。 **注意:**答案中不可以包含重复…...
Android Chips(标签)
目录 一、流式布局标签发展历程 二、类型及使用 2.1 Chip.Action(默认值) 2.2 Chip.Entry 2.3 Chip.Filter 2.4 Chip.Choice 三、常用事件 3.1 OnClickListener 3.2 OnCheckedChangeListener 3.3 OnCloseIconClickListener 四、ChipGroup 4.1 ChipGroup Chip.Choi…...
飞行汽车开发原理(上)
前言 小节的安排是由浅入深,要按顺序读;有电路知识基础的同学可跳到“计算机电路”一节开始。因为知识点之间有网状依赖,没办法按分类来讲。 为了避免过于深入、越讲越懵,很多描述仅为方便理解、不求严谨。 半导体特性 导体&a…...
22、pytest多个参数化的组合
官方实例 # content of test_multi_parametrie.py import pytestpytest.mark.parametrize("x",[0,1]) pytest.mark.parametrize("y",[2,3]) def test_foo(x,y):print("{}-{}".format(x,y))pass解读与实操 要获得多个参数化参数的所有组合&…...
【网络奇缘】- 如何自己动手做一个五类|以太网|RJ45|网络电缆
🌈个人主页: Aileen_0v0🔥系列专栏: 一见倾心,再见倾城 --- 计算机网络~💫个人格言:"没有罗马,那就自己创造罗马~" 本篇文章关于计算机网络的动手小实验---如何自己动手做一个网线, 也是为后面的物理层学习进…...
【从零开始学习JVM | 第三篇】类的生命周期(高频面试)
前言: 在Java编程中,类的生命周期是指类从被加载到内存中开始,到被卸载出内存为止的整个过程。了解类的生命周期对于理解Java程序的运行机制以及性能优化非常重要。 在本文中,我们将深入探讨类的生命周期,从类加载到…...
详解前后端交互时PO,DTO,VO模型类的应用场景
前后端交互时的数据传输模型 前后端交互流程 前后端交互的流程: 前端与后端开发人员之间主要依据接口进行开发 前端通过Http协议请求后端服务提供的接口后端服务的控制层Controller接收前端的请求Contorller层调用Service层进行业务处理Service层调用Dao持久层对数据持久化 …...
力扣295. 数据流的中位数
优先队列 思路: 中位数是排序中间的数值:S1.M.S2可以使用两个优先队列来存放两边的数值,总是使得左侧的堆顶是最大的,右侧的堆顶是最小的,即使用大顶堆存放 S1,使用小顶堆存放S2,使得两个队列的…...
英语二笔记
完型填空 20题/0.5分 总分10, 至少拿8分 阅读理解A 20题/2分 总分40 至少拿24分 阅读理解B 5题/2分 总分10 至少拿6分 短文翻译 1题/15分 …...
【OpenSSH升级】升级后证书认证登录突然失效
上一篇“【OpenSSH升级】无论密码输入正确与否总是登录失败(error: Could not get shadow information for root)”总结了CentOS7上的openssh从7.4升级到9.4之后,密码认证失败问题,这里再总结一下证书认证失效问题。 大多数情况下…...
pytest +uiautomator2+weditor app自动化从零开始
目录结构1.0 把设备连接单独移出去了 模块操作代码,有一些流程操作和断言方法 from devices import dv from time import sleep import random from tool.jt import capture_screenshotdef initialization(func):def wrapper():sleep(1)dv.app_stop(com.visteon.…...
Leetcode 3576. Transform Array to All Equal Elements
Leetcode 3576. Transform Array to All Equal Elements 1. 解题思路2. 代码实现 题目链接:3576. Transform Array to All Equal Elements 1. 解题思路 这一题思路上就是分别考察一下是否能将其转化为全1或者全-1数组即可。 至于每一种情况是否可以达到…...
黑马Mybatis
Mybatis 表现层:页面展示 业务层:逻辑处理 持久层:持久数据化保存 在这里插入图片描述 Mybatis快速入门 的形式进行分类展示。 🎯 目标 通过 CMake 脚本将 .cpp、.h 等源文件分组显示在 Visual Studio 2022 的解决方案资源管理器中。 ✅ 支持的方法汇总(共4种) 方法描述是否推荐…...
Device Mapper 机制
Device Mapper 机制详解 Device Mapper(简称 DM)是 Linux 内核中的一套通用块设备映射框架,为 LVM、加密磁盘、RAID 等提供底层支持。本文将详细介绍 Device Mapper 的原理、实现、内核配置、常用工具、操作测试流程,并配以详细的…...
如何在网页里填写 PDF 表格?
有时候,你可能希望用户能在你的网站上填写 PDF 表单。然而,这件事并不简单,因为 PDF 并不是一种原生的网页格式。虽然浏览器可以显示 PDF 文件,但原生并不支持编辑或填写它们。更糟的是,如果你想收集表单数据ÿ…...
深度学习习题2
1.如果增加神经网络的宽度,精确度会增加到一个特定阈值后,便开始降低。造成这一现象的可能原因是什么? A、即使增加卷积核的数量,只有少部分的核会被用作预测 B、当卷积核数量增加时,神经网络的预测能力会降低 C、当卷…...
R语言速释制剂QBD解决方案之三
本文是《Quality by Design for ANDAs: An Example for Immediate-Release Dosage Forms》第一个处方的R语言解决方案。 第一个处方研究评估原料药粒径分布、MCC/Lactose比例、崩解剂用量对制剂CQAs的影响。 第二处方研究用于理解颗粒外加硬脂酸镁和滑石粉对片剂质量和可生产…...
多模态图像修复系统:基于深度学习的图片修复实现
多模态图像修复系统:基于深度学习的图片修复实现 1. 系统概述 本系统使用多模态大模型(Stable Diffusion Inpainting)实现图像修复功能,结合文本描述和图片输入,对指定区域进行内容修复。系统包含完整的数据处理、模型训练、推理部署流程。 import torch import numpy …...
