Redis使用,AOF、RDB
前言
如果有人问你:"你会把 Redis 用在什么业务场景下?"
我想你大概率会说:"我会把它当作缓存使用,因为它把后端数据库中的数据存储在内存中,然后直接从内存中读取数据,响应速度会非常快。"
没错,这确实是 Redis 的一个普遍使用场景,但是,这里也有一个绝对不能忽略的问题:「一旦服务器宕机,内存中的数据将全部丢失」 。
目前,Redis 的持久化主要有两大机制,即 「AOF(Append Only File)日志和 RDB(Redis DataBase) 快照」 。
AOF
日志是如何实现的
说到日志,我们比较熟悉的是数据库的写前日志(Write Ahead Log, WAL),在实际写数据前,先把修改的数据记到日志文件中,以便故障时进行恢复。不过,AOF 日志正好相反,它是写后日志,"写后"的意思是 Redis 是先执行命令,把数据写入内存,然后才记录日志。

AOF日志是如何实现的
AOF 里记录的是 Redis 收到的每一条命令,这些命令是以文本形式保存的。
我们以 Redis 收到“set testkey testvalue”命令后记录的日志为例,看看 AOF 日志的内容。其中,“*3”表示当前命令有三个部分,每部分都是由“数字开头,后面紧跟着具体的命令、键或值。这里,数字表示这部分中的命令、键或值一共有多少字节。例如,3 set”表示这部分有 3 个字节,也就是“set”命令。

AOF日志是如何实现的
写后日志的优势与风险
「为了避免额外的检查开销,Redis 在向 AOF 里面记录日志的时候,并不会先去对这些命令进行语法检查」 。
如果先记日志再执行命令的话,日志中就有可能记录了错误的命令,Redis 在使用日志恢复数据时,就可能会出错。而写后日志这种方式,就是先让系统执行命令,只有命令能执行成功,才会被记录到日志中,否则,系统就会直接向客户端报错。
所以,Redis 使用写后日志这一方式的一大好处是,可以避免出现记录错误命令的情况。
除此之外,写后日志一个好处:它是在命令执行后才记录日志,「不会阻塞当前的写操作」 。
AOF 也有两个潜在的风险:
-
风险一:如果刚执行完一个命令,还没有来得及记日志就宕机了,那么这个命令和相应的数据就有丢失的风险。
-
-
如果此时 Redis 是用作缓存,还可以从后端数据库重新读入数据进行恢复。
-
如果 Redis 是直接用作数据库的话,此时,因为命令没有记入日志,所以就无法用日志进行恢复了。
-
-
风险二:AOF 虽然避免了对当前命令的阻塞,但可能会给下一个操作带来阻塞风险。
-
-
AOF 日志也是在主线程中执行(写回策略为 always 时),如果在把日志文件写入磁盘时,磁盘写压力大,就会导致写盘很慢,进而导致后续的操作也无法执行了。
-
这两个风险都是和 AOF 写回磁盘的时机相关的。这也就意味着,如果我们能够控制一个写命令执行完后 AOF 日志写回磁盘的时机,这两个风险就解除了。
日志的写回策略
AOF 机制一共有三种写回策略,也就是 AOF 配置项 appendfsync 的三个可选值。
-
「Always 同步写回」 :每个写命令执行完,立马同步地将日志写回磁盘;
-
「Everysec 每秒写回」 :每个写命令执行完,只是先把日志写到 AOF 文件的内存缓冲区,每隔一秒把缓冲区中的内容写入磁盘;
-
「No 操作系统控制的写回」 :每个写命令执行完,只是先把日志写到 AOF 文件的内存缓冲区,由操作系统决定何时将缓冲区内容写回磁盘。
针对避免主线程阻塞和减少数据丢失问题,这三种写回策略都无法做到两全其美。

日志的写回策略
我们就可以根据系统对高性能和高可靠性的要求,来选择使用哪种写回策略了。
-
想要获得高性能,就选择 No 策略;
-
想要得到高可靠性保证,就选择 Always 策略;
-
允许数据有一点丢失,又希望性能别受太大影响的话,那么就选择 Everysec 策略。
日志的重写
重写的作用
AOF 是以文件的形式在记录接收到的所有写命令。「随着接收的写命令越来越多,AOF 文件会越来越大」 。这也就意味着,我们一定要小心 AOF 文件过大带来的性能问题,主要在于以下三个方面:
-
一是,文件系统本身对文件大小有限制,无法保存过大的文件;
-
二是,如果文件太大,之后再往里面追加命令记录的话,效率也会变低;
-
三是,如果发生宕机,AOF 中记录的命令要一个个被重新执行,用于故障恢复,如果日志文件太大,整个恢复过程就会非常缓慢,这就会影响到 Redis 的正常使用。
AOF 重写机制就是在重写时,Redis 根据数据库的现状创建一个新的 AOF 文件,也就是说,「读取数据库中的所有键值对,然后对每一个键值对用一条命令记录它的写入」 。重写机制具有“多变一”功能。所谓的“多变一”,也就是说,旧日志文件中的多条命令,在重写后的新日志中变成了一条命令。

重写的作用
重写的过程
AOF 日志由主线程写回不同,重写过程是由「后台子进程 bgrewriteaof 来完成的,这也是为了避免阻塞主线程」 ,导致数据库性能下降。
我把重写的过程总结为“「一个拷贝,两处日志」 ”。
“一个拷贝”就是指,每次执行重写时,主线程 fork 出后台的 bgrewriteaof 子进程。此时,fork 会把主线程的内存拷贝一份给 bgrewriteaof 子进程,这里面就包含了数据库的最新数据。然后,bgrewriteaof 子进程就可以在不影响主线程的情况下,逐一把拷贝的数据写成操作,记入重写日志。
第一处日志,指的是因为主线程未阻塞,仍然可以处理新来的操作,Redis 会把这个操作写到它的缓冲区。这样一来,即使宕机了,这个 AOF 日志的操作仍然是齐全的,可以用于恢复。
第二处日志,就是指新的 AOF 重写日志。这个操作也会被写到重写日志的缓冲区。这样,重写日志也不会丢失最新的操作。等到拷贝数据的所有操作记录重写完成后,重写日志记录的这些最新操作也会写入新的 AOF 文件,以保证数据库最新状态的记录。
此时,我们就可以用新的 AOF 文件替代旧文件了。

重写的过程
总结来说,每次 AOF 重写时,Redis 会先执行一个内存拷贝,用于重写;然后,使用两个日志保证在重写过程中,新写入的数据不会丢失。而且,「因为 Redis 采用子进程进行日志重写,所以,这个过程并不会阻塞主线程」 。
正因为记录的是操作命令,而不是实际的数据,所以,用 AOF 方法进行故障恢复的时候,需要逐一把操作日志都执行一遍。如果操作日志非常多,Redis 就会恢复得很缓慢,影响到正常使用。这当然不是理想的结果。那么,还有没有既可以保证可靠性,还能在宕机时实现快速恢复的其他方法呢?
RDB
对 Redis 来说,它实现类似照片记录效果的方式,把某一时刻的状态以文件的形式写到磁盘上,也就是快照(RDB 文件)。这样一来,即使宕机,快照文件也不会丢失,数据的可靠性也就得到了保证。
和 AOF 相比,RDB 记录的是某一时刻的数据,并不是操作,所以,在做数据恢复时,我们可以直接把 RDB 文件读入内存,很快地完成恢复。
快照的原理
Redis 提供了两个命令来生成 RDB 文件,分别是 save 和 bgsave。
-
「save」 :在主线程中执行,会导致阻塞;
-
「bgsave」 :创建一个子进程,专门用于写入 RDB 文件,避免了主线程的阻塞,这也是 Redis RDB 文件生成的默认配置。
我们可以通过 bgsave 命令来执行全量快照,这既提供了数据的可靠性保证,也避免了对 Redis 的性能影响。
在执行快照的同时,Redis 就会借助操作系统提供的写时复制技术(Copy-On-Write, COW),正常处理写操作。bgsave 子进程是由主线程 fork 生成的,可以共享主线程的所有内存数据。bgsave 子进程运行后,开始读取主线程的内存数据,并把它们写入 RDB 文件。
如果主线程对这些数据也都是读操作(例如图中的键值对 A),那么,主线程和 bgsave 子进程相互不影响。但是,如果主线程要修改一块数据(例如图中的键值对 C),那么,这块数据就会被复制一份,生成该数据的副本(键值对 C’)。然后,主线程在这个数据副本上进行修改。同时,bgsave 子进程可以继续把原来的数据(键值对 C)写入 RDB 文件。

快照的原理
这样既保证了快照的完整性,也允许主线程同时对数据进行修改,避免了对正常业务的影响。
混合 AOF/RDB
虽然 bgsave 执行时不阻塞主线程,但是,如果频繁地执行全量快照,也会带来两方面的开销。
一方面,频繁将全量数据写入磁盘,会给磁盘带来很大压力,多个快照竞争有限的磁盘带宽,前一个快照还没有做完,后一个又开始做了,容易造成恶性循环(所以,在 Redis 中如果有一个 bgsave 在运行,就不会再启动第二个 bgsave 子进程)。
另一方面,bgsave 子进程需要通过 fork 操作从主线程创建出来。虽然,子进程在创建后不会再阻塞主线程,但是,「fork 这个创建过程本身会阻塞主线程」 ,而且主线程的内存越大,阻塞时间越长。
Redis 4.0 中提出了一个混合使用 AOF 日志和内存快照的方法。简单来说,「内存快照以一定的频率执行,在两次快照之间,使用 AOF 日志记录这期间的所有命令操作」 。这样一来,快照不用很频繁地执行,这就避免了频繁 fork 对主线程的影响。而且,AOF 日志也只用记录两次快照间的操作,也就是说,不需要记录所有操作了,因此,就不会出现文件过大的情况了,也可以避免重写开销。

混合 AOF/RDB
总结
最后,关于 AOF 和 RDB 的选择问题,我想再给你提三点建议:
-
数据不能丢失时,内存快照和 AOF 的混合使用是一个很好的选择;
-
如果允许分钟级别的数据丢失,可以只使用 RDB;
-
如果只用 AOF,优先使用 everysec 的配置选项,因为它在可靠性和性能之间取了一个平衡。
相关文章:
Redis使用,AOF、RDB
前言 如果有人问你:"你会把 Redis 用在什么业务场景下?" 我想你大概率会说:"我会把它当作缓存使用,因为它把后端数据库中的数据存储在内存中,然后直接从内存中读取数据,响应速度会非常快。…...
SOLIDWORKS Premium 2023 SP1.0 三维设计绘图软件
SOLIDWORKS 中文完美正式版提供广泛工具来处理最复杂的问题,并提供深层技术完成关键细节工作。新功能可助您改善产品开发流程,以更快地将创新产品投入生产。Solidworks 是达索公司最新推出的三维CAD系统,它可让设计师大大缩短产品的设计时间,让产品得以快速、高效地投向市场…...
PyQGIS开发--自动化地图布局案例
前言创建地图布局是 GIS 作业结束时的一项常见任务。 它用于呈现最终结果的输出,作为与用户交流的一种方式,以便从地图中获取信息、知识或见解。 在包括 QGIS 在内的任何 GIS 软件中制作地图布局都非常容易。 但另一方面,当我们必须生成如此大…...
严格模式和非严格模式下的this指向问题
一、全局环境 1.函数调用 非严格模式:this指向是Window // 普通函数 function fn () { console.log(this, this); } fn() // 自执行函数 (function fn () { console.log(this, this); })() 严格模式:this指向是undefined //…...
vue2、vue3组件传值,引用类型,对象数组如何处理
vue2、vue3组件传值,引用类型,对象数组如何处理 Excerpt 所有的 prop 都使得其父子 prop 之间形成了一个单向下行绑定:父级 prop 的更新会向下流动到子组件中,但是反过来则不行。这样会防止从子组件意外变更父… 下述组件传值指引…...
165. 小猫爬山
Powered by:NEFU AB-IN Link 文章目录165. 小猫爬山题意思路代码165. 小猫爬山 题意 翰翰和达达饲养了 N只小猫,这天,小猫们要去爬山。 经历了千辛万苦,小猫们终于爬上了山顶,但是疲倦的它们再也不想徒步走下山了(呜咕…...
ECharts教程(详细)
ECharts教程(详细) 非常全面的ECharts教程,非常全面的ECharts教程,目前线条/节点颜色、线条粗细、线条样式、线条阴影、线条平滑、线条节点大小、线条节点阴影、线条节点边框、线条节点边框阴影、工具提醒、工具提醒样式、工具自定义提醒、工具提醒背景…...
pinia
目录一、介绍二、快速上手1.安装2.基本使用与state3.actions的使用4.getters的使用5.storeToRefs的使用6.pinia模块化三、数据持久化1.安装2.使用插件3.模块开启持久化4.按需缓存模块的数据一、介绍 pinia从使用角度和之前Vuex几乎是一样的,比Vuex更简单了。 在Vu…...
mysql中insert语句的五种用法
文章目录前言一、values参数后单行插入二、values参数后多行插入三、搭配select插入数据四、复制旧表的信息到新表五、搭配set插入数据总结前言 insert语句是标准sql中的语法,是插入数据的意思。在实际应用中,它也演变了很多种用法来实现特殊的功能&…...
YOLOV7模型调试记录
先前的YOLOv7模型是pytorch重构的,并非官方提供的源码,而在博主使用自己的数据集进行实验时发现效果并不理想,因此生怕是由于源码重构导致该问题,此外还需进行对比实验,因此便从官网上下载了源码,进行调试运…...
模拟光伏不确定性——拉丁超立方抽样生成及缩减场景(Matlab全代码)
光伏出力的不确定性主要源于预测误差,而研究表明预测误差(e)服从正态分布且大概为预测出力的10%。本代码采用拉丁超立方抽样实现场景生成[1,2]、基于概率距离的快速前代消除法实现场景缩减[3],以此模拟了光伏出力的不确定性。与风电不确定性模拟不同之处在于——光伏存在0出…...
Elasticsearch聚合查询速览
Es 数据分析工具 - Elasticsearch Aggregations (聚合查询) 官方文档 Aggregations | Elasticsearch Guide [7.15] | Elastic 1. Bucket aggregations 桶聚合 that group documents into buckets, also called bins, based on field values, ranges, o…...
CEC2017:鱼鹰优化算法(Osprey optimization algorithm,OOA)求解cec2017(提供MATLAB代码)
一、鱼鹰优化算法简介 鱼鹰优化算法(Osprey optimization algorithm,OOA)由Mohammad Dehghani 和 Pavel Trojovsk于2023年提出,其模拟鱼鹰的捕食行为。 鱼鹰是鹰形目、鹗科、鹗属的仅有的一种中型猛禽。雌雄相似。体长51-64厘米…...
Vue3 企业级项目实战:通关 Vue3 企业级项目开发,升职加薪快人一步
Vue3 企业级项目实战 - 程序员十三 - 掘金小册Vue3 Element Plus Spring Boot 企业级项目开发,升职加薪,快人一步。。「Vue3 企业级项目实战」由程序员十三撰写,2744人购买https://s.juejin.cn/ds/S2RkR9F/ 课程介绍 很高兴为大家介绍这个…...
vue样式绑定(v-if)
文章目录一.第一次用vue框架二.要求:1.定义两种样式,一种描述正确的状态,一种描述错误的状态。2.在结构代码中定义一个块,实现绑定正确的样式状态。3.定义一个按钮,实现正确和错误两种状态的class切换。三.源代码四.效果一.第一次…...
无需公网IP,安全稳定实现U8C异地访问
用友是全球领先的企业云服务与软件提供商,在财务、人力、供应链、采购、制造、营销、研发、项目、资产、协同等领域为客户提供数字化、智能化、社会化的企业云服务产品与解决方案。 U8C是用友针对成长型、创新型企业,提供企业级ERP整体解决方案。在系统…...
Graph Neural Network(GNN)图神经网络
Graph Neural Network(GNN)图神经网络,是一种旨在对图结构数据就行操作的深度学习算法。它可以很自然地表示现实世界中的很多问题,包括社交网络,分子结构和交通网络等。GNN旨在处理此类图结构数据,并对图中的节点和边进行预测或执…...
JSTL核心库的简单使用
JSTL核心库的简单使用 7.1考试重点 7.1.1c:out输出数据 考试重点就是c的相关的 jar包下载地址:Apache Tomcat - Apache Taglibs Downloads 看会典型应用就可以<% page contentType"text/html;charsetUTF-8" language"java" %> <% taglib uri"…...
ffmpeg.dll丢失怎么办,有什么修复ffmpeg.dll的方法
如果你在运行某些音视频软件或游戏时遇到了“ffmpeg.dll丢失”的错误消息,这意味着你的Windows系统中缺少了ffmpeg.dll文件,这是一个必要的动态链接库(DLL)文件,用于支持许多音视频软件和游戏的运行。在这篇文章中&…...
【学习笔记】NOIP爆零赛9
这场考炸了,不过也还好,正好给自己警醒的作用 t1t1t1应该是想到正解了,就是最后边界那个地方还是没有想清楚,哎这种交互题卡询问次数还是挺难受的,并且似乎我对于这种细节并不能很好把握。然后就少了50pts50pts50pts是…...
IGP(Interior Gateway Protocol,内部网关协议)
IGP(Interior Gateway Protocol,内部网关协议) 是一种用于在一个自治系统(AS)内部传递路由信息的路由协议,主要用于在一个组织或机构的内部网络中决定数据包的最佳路径。与用于自治系统之间通信的 EGP&…...
解锁数据库简洁之道:FastAPI与SQLModel实战指南
在构建现代Web应用程序时,与数据库的交互无疑是核心环节。虽然传统的数据库操作方式(如直接编写SQL语句与psycopg2交互)赋予了我们精细的控制权,但在面对日益复杂的业务逻辑和快速迭代的需求时,这种方式的开发效率和可…...
系统设计 --- MongoDB亿级数据查询优化策略
系统设计 --- MongoDB亿级数据查询分表策略 背景Solution --- 分表 背景 使用audit log实现Audi Trail功能 Audit Trail范围: 六个月数据量: 每秒5-7条audi log,共计7千万 – 1亿条数据需要实现全文检索按照时间倒序因为license问题,不能使用ELK只能使用…...
【C++从零实现Json-Rpc框架】第六弹 —— 服务端模块划分
一、项目背景回顾 前五弹完成了Json-Rpc协议解析、请求处理、客户端调用等基础模块搭建。 本弹重点聚焦于服务端的模块划分与架构设计,提升代码结构的可维护性与扩展性。 二、服务端模块设计目标 高内聚低耦合:各模块职责清晰,便于独立开发…...
Mobile ALOHA全身模仿学习
一、题目 Mobile ALOHA:通过低成本全身远程操作学习双手移动操作 传统模仿学习(Imitation Learning)缺点:聚焦与桌面操作,缺乏通用任务所需的移动性和灵活性 本论文优点:(1)在ALOHA…...
【7色560页】职场可视化逻辑图高级数据分析PPT模版
7种色调职场工作汇报PPT,橙蓝、黑红、红蓝、蓝橙灰、浅蓝、浅绿、深蓝七种色调模版 【7色560页】职场可视化逻辑图高级数据分析PPT模版:职场可视化逻辑图分析PPT模版https://pan.quark.cn/s/78aeabbd92d1...
iview框架主题色的应用
1.下载 less要使用3.0.0以下的版本 npm install less2.7.3 npm install less-loader4.0.52./src/config/theme.js文件 module.exports {yellow: {theme-color: #FDCE04},blue: {theme-color: #547CE7} }在sass中使用theme配置的颜色主题,无需引入,直接可…...
省略号和可变参数模板
本文主要介绍如何展开可变参数的参数包 1.C语言的va_list展开可变参数 #include <iostream> #include <cstdarg>void printNumbers(int count, ...) {// 声明va_list类型的变量va_list args;// 使用va_start将可变参数写入变量argsva_start(args, count);for (in…...
【LeetCode】3309. 连接二进制表示可形成的最大数值(递归|回溯|位运算)
LeetCode 3309. 连接二进制表示可形成的最大数值(中等) 题目描述解题思路Java代码 题目描述 题目链接:LeetCode 3309. 连接二进制表示可形成的最大数值(中等) 给你一个长度为 3 的整数数组 nums。 现以某种顺序 连接…...
Python 训练营打卡 Day 47
注意力热力图可视化 在day 46代码的基础上,对比不同卷积层热力图可视化的结果 import torch import torch.nn as nn import torch.optim as optim from torchvision import datasets, transforms from torch.utils.data import DataLoader import matplotlib.pypl…...
