当前位置: 首页 > news >正文

【动手学深度学习】(六)权重衰退

文章目录

  • 一、理论知识
  • 二、代码实现
    • 2.1从零开始实现
    • 2.2简洁实现
  • 【相关总结】

主要解决过拟合

一、理论知识

1、使用均方范数作为硬性限制(不常用)
通过限制参数值的选择范围来控制模型容量
在这里插入图片描述
通常不限制偏移b
小的在这里插入图片描述意味着更强的正则项
使用均方范数作为柔性限制
对于每个在这里插入图片描述都可以找到在这里插入图片描述使得之前的目标函数等价于下面的:
在这里插入图片描述

可以通过拉格朗日乘子来证明
超参数在这里插入图片描述控制了正则项的重要程度

在这里插入图片描述
在这里插入图片描述
参数更新法则
在这里插入图片描述
总结:

  • 权重衰退通过L2正则项使得模型参数不会过大,从而控制模型复杂度
  • 正则项权重是控制模型复杂度的超参数

二、代码实现

权重衰减是最广泛使用的正则化技术之一
1.首先,人工生成数据
在这里插入图片描述
我们选择标签是关于输入的线性函数。 标签同时被均值为0,标准差为0.01高斯噪声破坏。 为了使过拟合的效果更加明显,我们可以将问题的维数增加到, 并使用一个只包含20个样本的小训练集。

%matplotlib inline
import torch
from torch import nn
from d2l import torch as d2l
n_train, n_test, num_inputs, batch_size = 20, 100, 200, 5
true_w, true_b = torch.ones((num_inputs, 1)) * 0.01, 0.05
# print(torch.ones((num_inputs, 1)))
# print(true_w)
train_data = d2l.synthetic_data(true_w, true_b, n_train)
train_iter = d2l.load_array(train_data, batch_size)
# print(train_iter)
test_data = d2l.synthetic_data(true_w, true_b, n_test)
test_iter = d2l.load_array(test_data, batch_size, is_train=False)

2.1从零开始实现

只需将的平方惩罚添加到原始目标函数中。

def init_params():w = torch.normal(0, 1, size=(num_inputs, 1), requires_grad=True)b = torch.zeros(1, requires_grad=True)return [w,b]

定义L2范数惩罚

def l2_penalty(w):return torch.sum(w.pow(2)) / 2

定义训练代码

def train(lambd):w,b = init_params()net, loss = lambda X: d2l.linreg(X, w, b), d2l.squared_lossnum_epochs, lr = 100, 0.003animator = d2l.Animator(xlabel='epochs', ylabel='loss', yscale='log',xlim=[5,num_epochs], legend=['train', 'test'])for epoch in range(num_epochs):for X, y in train_iter:
#             增加了L2范数惩罚项
# 广播机制使l2_penalty(w)成为一个长度为torch_size的向量l = loss(net(X), y) + lambd * l2_penalty(w)l.sum().backward()d2l.sgd([w,b], lr, batch_size)if(epoch + 1) % 5 == 0:animator.add(epoch + 1, (d2l.evaluate_loss(net, train_iter, loss),d2l.evaluate_loss(net, test_iter, loss)))print('w的L2范数是:',torch.norm(w).item())

忽略正则化直接训练
用lambd = 0禁用权重衰减

train(lambd=0)

w的L2范数是: 13.702591896057129
在这里插入图片描述
使用权重衰退

train(lambd=3)

w的L2范数是: 0.36873573064804077
在这里插入图片描述

2.2简洁实现

在实例化优化器时直接通过weight_decay指定weight decay超参数

def train_concise(wd):net = nn.Sequential(nn.Linear(num_inputs, 1))for param in net.parameters():param.data.normal_()loss = nn.MSELoss(reduction='none')num_epochs, lr = 100, 0.003# 偏置参数没有衰减trainer = torch.optim.SGD([{"params":net[0].weight,'weight_decay': wd},{"params":net[0].bias}], lr=lr)animator = d2l.Animator(xlabel='epochs', ylabel='loss', yscale='log',xlim=[5, num_epochs], legend=['train', 'test'])for epoch in range(num_epochs):for X, y in train_iter:trainer.zero_grad()l = loss(net(X), y)l.mean().backward()trainer.step()if (epoch + 1) % 5 == 0:animator.add(epoch + 1,(d2l.evaluate_loss(net, train_iter, loss),d2l.evaluate_loss(net, test_iter, loss)))print('w的L2范数:', net[0].weight.norm().item())
train_concise(0)

w的L2范数: 12.619434356689453
在这里插入图片描述

train_concise(3)

w的L2范数: 0.3909929692745209
在这里插入图片描述

【相关总结】

相关文章:

【动手学深度学习】(六)权重衰退

文章目录 一、理论知识二、代码实现2.1从零开始实现2.2简洁实现 【相关总结】 主要解决过拟合 一、理论知识 1、使用均方范数作为硬性限制(不常用) 通过限制参数值的选择范围来控制模型容量 通常不限制偏移b 小的意味着更强的正则项 使用均方范数作为柔…...

动手学习深度学习-跟李沐学AI-自学笔记(3)

一、深度学习硬件-CPU和GPU 芯片:Intel or AMD 内存:DDR4 显卡:nVidia 芯片可以和GPU与内存通信 GPU不能和内存通信 1. CPU 能算出每一秒能运算的浮点运算数(大概0.15左右) 1.1 提升CPU利用率 1.1.1 提升缓存…...

3.2 Puppet 和 Chef 的比较与应用

Puppet 和 Chef 的比较与应用 文章目录 Puppet 和 Chef 的比较与应用Puppet 和 Chef 简介工作原理对比**模块化的重要性**: Puppet 和 Chef 简介 介绍 Puppet 和 Chef 这两个流行的配置管理工具的背景和用途。强调它们的共同目标:实现自动化的系统配置和…...

promise使用示例

下面是一个 Promise 使用示例,通过 Promise 实现异步操作的链式调用: const getUser (userId) > {return new Promise((resolve, reject) > {// 模拟异步请求setTimeout(() > {const users [{ id: 1, name: Alice },{ id: 2, name: Bob },{ …...

一起学docker系列之十四Dockerfile微服务实践

目录 1 前言2 创建微服务模块2.1 **创建项目模块**2.2 **编写业务代码** 3 编写 Dockerfile4 构建 Docker 镜像5 运行 Docker 容器6 测试微服务7 总结8 参考地址 1 前言 微服务架构已经成为现代软件开发中的一种重要方式。而 Docker 提供了一种轻量级、便携式的容器化解决方案…...

Qt Creator 11.0.3同时使用Qt6.5和Qt5.14.2

Qt Creator 11.0.3同时使用Qt6.5和Qt5.14.2 概要方法1.打开Qt Creator中的Kit,这里我直接附上几张截图,不同的版本打开位置可能有所不同,总之最终目的是要打开构建套件(Kit)2.可以看到构建套件里面有包含了“构建套件K…...

Python中字符串列表的相互转换详解

更多资料获取 📚 个人网站:ipengtao.com 在Python编程中,经常会遇到需要将字符串列表相互转换的情况。这涉及到将逗号分隔的字符串转换为列表,或者将列表中的元素连接成一个字符串。本文将深入讨论这些情景,并提供丰富…...

09、pytest多种调用方式

官方用例 # content of myivoke.py import sys import pytestclass MyPlugin:def pytest_sessionfinish(self):print("*** test run reporting finishing")if __name__ "__main__":sys.exit(pytest.main(["-qq"],plugins[MyPlugin()]))# conte…...

分布式锁常见实现方案

分布式锁常见实现方案 基于 Redis 实现分布式锁 如何基于 Redis 实现一个最简易的分布式锁? 不论是本地锁还是分布式锁,核心都在于“互斥”。 在 Redis 中, SETNX 命令是可以帮助我们实现互斥。SETNX 即 SET if Not eXists (对应 Java 中…...

26、pytest使用allure解读

官方实例 # content of pytest_quick_start_test.py import allurepytestmark [allure.epic("My first epic"), allure.feature("Quick start feature")]allure.id(1) allure.story("Simple story") allure.title("test_allure_simple_te…...

Uncle Maker: (Time)Stamping Out The Competition in Ethereum

目录 笔记后续的研究方向摘要引言贡献攻击的简要概述 Uncle Maker: (Time)Stamping Out The Competition in Ethereum CCS 2023 笔记 本文对以太坊 1 的共识机制进行了攻击,该机制允许矿工获得比诚实同行更高的挖矿奖励。这种名为“Uncle Maker”的攻击操纵区块时间…...

浅谈可重入与线程安全

文章目录 可重入与线程安全的关系 可重入 若一个程序或子程序可以“在任意时刻被中断然后操作系统调度执行另一段代码,这段代码又使用了该副程序不会出错”,则称其为可重入(reentrant 或 re-entrant)的。即当该副程序正在运作时&…...

深入理解TDD(测试驱动开发):提升代码质量的利器

在日常的软件开发工作中,我们常常会遇到这样的问题:如何在繁忙的项目进度中,保证我们的代码质量?如何在不断的迭代更新中,避免引入新的错误?对此,有一种有效的开发方式能帮助我们解决这些问题&a…...

pyqt5使用pyqtgraph实现动态热力图

pyqt5使用pyqtgraph实现动态热力图 一、效果图 二、流程 1、打开Designer创建一个UI界面 2、把UI转成py 3、创建一个main.py文件 4、在main文件中渲染画布、创建初始数据、画热力图、创建更新数据线程、绑定按钮触发事件三、UI界面 其中h_map.py代码如下: # -*- coding: ut…...

【android开发-16】android中文件和sharedpreferences数据存储详解

1,文件读写方式的数据存储 下面是一个简单的示例,演示如何在Android中使用内部存储来保存和读取文件: 保存文件: try { String data "这是要保存的数据"; FileOutputStream fos openFileOutput("myFile"…...

《当代家庭教育》期刊论文投稿发表简介

《当代家庭教育》杂志是家庭的参谋和助手,社会的桥梁和纽带,人生的伴侣和知音,事业的良师益友。 国家新闻出版总署批准的正规省级教育类G4期刊,知网、维普期刊网收录。安排基础教育相关稿件,适用于评职称时的论文发表…...

【操作教程】如何将外省医保转入广州市区(医保转移接续手续办理)?

登录(可以用微信扫码采用粤省事账号登录,没有粤省事小程序账号的可以自主申请很方便)广东政务服务网https://www.gdzwfw.gov.cn/ 这里不得不吐槽官网开发者,太拉胯了,居然有undefined,多刷新几次就好了&…...

【分布式系统学习】CAP原理详解

CAP原理详解 前言CAP一张图 一、概念1.1 关键词解读1.2 关于CAP(拆分解读)1.3 CAP原理精髓 二、CAP模拟场景举例理解三、CAP原理证明为什么不能同时满足(下面举例说明)3.1 必须满足分区容错性P下的处理方式3.2 不是必须满足分区容…...

【聚类】K-modes和K-prototypes——适合离散数据的聚类方法

应用场景: 假设一批数据,每一个样本中,有唯一标识(id)、品类(cate_id)、受众(users, 小孩、老人、中年等)等属性,希望从其中找出一些样本,使得这…...

Python-炸弹人【附完整源码】

炸弹人 炸弹人是童年的一款经典电子游戏,玩家控制一个类似"炸弹人"的角色,这个角色可以放置炸弹,并在指定的时间内引爆它们消灭敌人以达到目标,此游戏共设有两节关卡,代码如下: 运行效果&#x…...

利用最小二乘法找圆心和半径

#include <iostream> #include <vector> #include <cmath> #include <Eigen/Dense> // 需安装Eigen库用于矩阵运算 // 定义点结构 struct Point { double x, y; Point(double x_, double y_) : x(x_), y(y_) {} }; // 最小二乘法求圆心和半径 …...

Linux链表操作全解析

Linux C语言链表深度解析与实战技巧 一、链表基础概念与内核链表优势1.1 为什么使用链表&#xff1f;1.2 Linux 内核链表与用户态链表的区别 二、内核链表结构与宏解析常用宏/函数 三、内核链表的优点四、用户态链表示例五、双向循环链表在内核中的实现优势5.1 插入效率5.2 安全…...

电脑插入多块移动硬盘后经常出现卡顿和蓝屏

当电脑在插入多块移动硬盘后频繁出现卡顿和蓝屏问题时&#xff0c;可能涉及硬件资源冲突、驱动兼容性、供电不足或系统设置等多方面原因。以下是逐步排查和解决方案&#xff1a; 1. 检查电源供电问题 问题原因&#xff1a;多块移动硬盘同时运行可能导致USB接口供电不足&#x…...

Linux云原生安全:零信任架构与机密计算

Linux云原生安全&#xff1a;零信任架构与机密计算 构建坚不可摧的云原生防御体系 引言&#xff1a;云原生安全的范式革命 随着云原生技术的普及&#xff0c;安全边界正在从传统的网络边界向工作负载内部转移。Gartner预测&#xff0c;到2025年&#xff0c;零信任架构将成为超…...

零基础设计模式——行为型模式 - 责任链模式

第四部分&#xff1a;行为型模式 - 责任链模式 (Chain of Responsibility Pattern) 欢迎来到行为型模式的学习&#xff01;行为型模式关注对象之间的职责分配、算法封装和对象间的交互。我们将学习的第一个行为型模式是责任链模式。 核心思想&#xff1a;使多个对象都有机会处…...

OpenPrompt 和直接对提示词的嵌入向量进行训练有什么区别

OpenPrompt 和直接对提示词的嵌入向量进行训练有什么区别 直接训练提示词嵌入向量的核心区别 您提到的代码: prompt_embedding = initial_embedding.clone().requires_grad_(True) optimizer = torch.optim.Adam([prompt_embedding...

自然语言处理——循环神经网络

自然语言处理——循环神经网络 循环神经网络应用到基于机器学习的自然语言处理任务序列到类别同步的序列到序列模式异步的序列到序列模式 参数学习和长程依赖问题基于门控的循环神经网络门控循环单元&#xff08;GRU&#xff09;长短期记忆神经网络&#xff08;LSTM&#xff09…...

ios苹果系统,js 滑动屏幕、锚定无效

现象&#xff1a;window.addEventListener监听touch无效&#xff0c;划不动屏幕&#xff0c;但是代码逻辑都有执行到。 scrollIntoView也无效。 原因&#xff1a;这是因为 iOS 的触摸事件处理机制和 touch-action: none 的设置有关。ios有太多得交互动作&#xff0c;从而会影响…...

面向无人机海岸带生态系统监测的语义分割基准数据集

描述&#xff1a;海岸带生态系统的监测是维护生态平衡和可持续发展的重要任务。语义分割技术在遥感影像中的应用为海岸带生态系统的精准监测提供了有效手段。然而&#xff0c;目前该领域仍面临一个挑战&#xff0c;即缺乏公开的专门面向海岸带生态系统的语义分割基准数据集。受…...

Kafka入门-生产者

生产者 生产者发送流程&#xff1a; 延迟时间为0ms时&#xff0c;也就意味着每当有数据就会直接发送 异步发送API 异步发送和同步发送的不同在于&#xff1a;异步发送不需要等待结果&#xff0c;同步发送必须等待结果才能进行下一步发送。 普通异步发送 首先导入所需的k…...