【聚类】K-modes和K-prototypes——适合离散数据的聚类方法
应用场景:
假设一批数据,每一个样本中,有唯一标识(id)、品类(cate_id)、受众(users, 小孩、老人、中年等)等属性,希望从其中找出一些样本,使得这些样本覆盖的品类、受众等最广。
分析:
思路是使用聚类的方式,每个簇选一个样本。观察数据,都为类别特征,常用的kmeans聚类方法,会使用欧式距离,计算两个样本之间的距离,来判断该样本是否数据该簇。对于类别特征来说,就算表示为0 ,1, 2,这些数字没有大小的意义,只代表某一个属性。所以我们不可以使用判断距离的方式,划分簇。
经过调研,认识到了两个新的聚类方法:K-modes和K-prototypes。下面分别介绍下两个方法。
K-modes
适用于离散数据,采用汉明距离
K-modes算法是按照k-means算法的核心内容进行修改,主要有以下两点:
1.度量方式。样本之间的距离D,属性相同为0,不同为1,并将所有属性结有相加。因此D越大,即他的不相关程度越强(与欧式距离代表的意义是一样的);
汉明距离:Hamming Distance也能用来计算两个向量的相似度,通过比较向量每一位是否相同,若不同则汉明距离加1,这样得到汉明距离。向量相似度越高,对应的汉明距离越小。如10001001和10110001有3位不同。
2.更新modes,使用一个簇的每个属性出现频率最大的那个属性值作为代表簇的属性值(如{[a,b] [a,c] [c,b] [b,c]})代表模式为[a,b]或者[a,c];
from kmodes.kmodes import KModesKM = KModes(n_clusters=i,init='Huang').fit_predict(X)
K-prototypes
适用于混合数据(有离散有连续)
K-Prototype算法是结合K-Means与K-modes算法,针对混合属性的,解决2个核心问题如下:
1.度量具有混合属性的方法是,数值属性采用K-means方法得到P1,分类属性采用K-modes方法P2,那么D=P1+a*P2,a是权重,如果觉得分类属性重要,则增加a,否则减少a,a=0时即只有数值属性
2.更新一个簇的中心的方法,方法是结合K-Means与K-modes的更新方法
from kmodes.kprototypes import KPrototypesKP = KPrototypes(n_clusters=self.k, init='Cao').fit_predict(X, categorical=self.dis_col)
相关文章:
【聚类】K-modes和K-prototypes——适合离散数据的聚类方法
应用场景: 假设一批数据,每一个样本中,有唯一标识(id)、品类(cate_id)、受众(users, 小孩、老人、中年等)等属性,希望从其中找出一些样本,使得这…...
Python-炸弹人【附完整源码】
炸弹人 炸弹人是童年的一款经典电子游戏,玩家控制一个类似"炸弹人"的角色,这个角色可以放置炸弹,并在指定的时间内引爆它们消灭敌人以达到目标,此游戏共设有两节关卡,代码如下: 运行效果&#x…...
[英语学习][5][Word Power Made Easy]的精读与翻译优化
[序言] 今日完成第18页的阅读, 发现大量的翻译错误以及不准确. 需要分两篇文章进行讲解. [英文学习的目标] 提升自身的英语水平, 对日后编程技能的提升有很大帮助. 希望大家这次能学到东西, 同时加入我的社区讨论与交流英语相关的内容. [原著英文与翻译版对照][第18页] Wh…...
Apache Doris 详细教程(一)
1、Doris简介 1.1、doris概述 Apache Doris 由百度大数据部研发(之前叫百度 Palo,2018 年贡献到 Apache 社区后, 更名为 Doris ),在百度内部,有超过 200 个产品线在使用,部署机器超过 1000 台…...
【Vue3从入门到项目实现】RuoYi-Vue3若依框架前端学习——登录页面
若依官方的前后端分离版中,前端用的Vue2,这个有人改了Vue3的前端出来。刚好用来学习: https://gitee.com/weifengze/RuoYi-Vue3 运行前后端项目 首先运行项目 启动前端,npm install、npm run dev 启动后端,按教程配置…...
win11 关闭快速启动,解决重启后部分应用没有关闭的问题
鼠标右击win11开始菜单选择windows终端(管理员)打开输入:powercfg /h off按下回车即可...
python爬虫-某公开数据网站实例小记
注意!!!!某XX网站逆向实例仅作为学习案例,禁止其他个人以及团体做谋利用途!!! 第一步:分析页面和请求方式 此网站没有技巧的加密,仅是需要携带cookie和请求…...
还记得当初自己为什么选择计算机?
还记得当初自己为什么选择计算机? 当初你问我为什么选择计算机,我笑着回答:“因为我梦想成为神奇的码农!我想像编织魔法一样编写程序,创造出炫酷的虚拟世界!”谁知道,我刚入门的那天࿰…...
“数”说新语向未来 | GBASE南大通用2023媒体交流会成功举办
在当前国家信创战略加速实施,及国民经济数字化转型,叠加驱动信息化行业加速发展的大形势下,以“数说新语-GBASE南大通用开放创新再领航”为主题的2023 GBASE南大通用媒体交流日活动在GBASE天津总部举行。来自IT168、ITPUB、韩锋频道、自主可控…...
每天一点python——day88
#每天一点Python——88 #编程两大思想【面向过程与面向对象】 #如图: 面向过程的线性思维: 类似于做菜一步步的来,先怎么样怎么样,再怎么样 如果不一步步的来,例如先炒菜再点火,这样是做不好的 面向对象&a…...
xShell快捷键
Xshell 是一个强大的终端仿真器,它支持多种Linux发行版的远程连接。Xshell提供了一系列的快捷键,以提高用户的操作效率。以下是一些Xshell中常用的快捷键: 新建会话窗口: Ctrl N 或 Ctrl Shift N 在现有会话中打开新标签&…...
OkGo导入失败解决办法
jcenter()maven { url "https://jitpack.io" }再同步就可以了...
02、pytest环境准备
工具准备 下载Python——python官网下载:https://www.python.org/下载PyCharm——pycharm官网下载:https://www.jetbrains.com.cn/en-us/pycharm/参考文档——pytest官方文档:https://docs.pytest.org/en/7.4.x/一个方便好用的office库——p…...
海上液化天然气 LNG 终端 ,数字孪生监控系统
液化天然气 (Liquefied Natural Gas,简称 LNG) 在能源转型过程中被广泛认可为相对较清洁的能源选择。 相对于传统的煤炭和石油燃料,LNG 的燃烧过程产生的二氧化碳 (CO2) 排放较低。LNG 的燃烧释放的二氧化碳排放较少,因此对应对气候变化和减…...
C语言面试之旅:掌握基础,探索深度(面试实战之ARM架构二)
读别人的代码,就像撕洋葱,每读一层,哭一遍。 引言 ARM 处理器是冯诺依曼存储结构,程序空间、RAM 空间及IO 映射空间统一编址,除对对RAM 操作以外,对外围IO、程序数据的访问均要通过加载/存储指令进…...
Axios详解及运用案例
前言 Axios 是一个基于 Promise 的 HTTP 客户端,用于浏览器和 Node.js。它允许开发者使用异步的方式发送 HTTP 请求,同时提供了一个简单、方便的 API 来处理这些请求和响应。 主要特性 Axios 的主要特性包括: 支持 Promise API:Axios 的所有函数都返回一个 Promise 对象…...
期刊影响因子和期刊分区(国内-中科院/国外-JCR分区)
总结: SCI就是一个WOS中的一个科学类引文数据库,是理科方向的;SSCI是当中的社会科学类引文数据库,也就是文科方向的;SCIE:Science Citation Index-Expanded(SCI-E,科学引文索引&…...
R语言gWQS包在加权分位数和回归模型的应用
在流行病学研究中,相较于单一因素的暴露,多因素同时暴露的情况更为常见。传统模型在评价多因素联合暴露时存在数据维度高、多重共线性等问题. WQS 回归模型的基本原理是通过分位数间距及加权的方法,将多种研究因素的效应综合成为一个指数&…...
【Makelist】release无法生成pdb
记录makelist使用中遇到的问题 一、release版无法生成pdb 【解决方法】:需要在最大级的Makelist下的设置编译器选项添加如下标记 #release 链接库生成pdbSET(CMAKE_CXX_FLAGS_RELEASE "${CMAKE_CXX_FLAGS_RELEASE} /Zi")#lib的 release链接库生成pdbSET…...
【Linux】信号的保存和捕捉
文章目录 一、信号的保存——信号的三个表——block表,pending表,handler表sigset_t信号集操作函数——用户层sigprocmask和sigpending——内核层 二、信号的捕捉重谈进程地址空间(第三次)用户态和内核态sigaction可重入函数volat…...
浏览器访问 AWS ECS 上部署的 Docker 容器(监听 80 端口)
✅ 一、ECS 服务配置 Dockerfile 确保监听 80 端口 EXPOSE 80 CMD ["nginx", "-g", "daemon off;"]或 EXPOSE 80 CMD ["python3", "-m", "http.server", "80"]任务定义(Task Definition&…...
网络六边形受到攻击
大家读完觉得有帮助记得关注和点赞!!! 抽象 现代智能交通系统 (ITS) 的一个关键要求是能够以安全、可靠和匿名的方式从互联车辆和移动设备收集地理参考数据。Nexagon 协议建立在 IETF 定位器/ID 分离协议 (…...
XCTF-web-easyupload
试了试php,php7,pht,phtml等,都没有用 尝试.user.ini 抓包修改将.user.ini修改为jpg图片 在上传一个123.jpg 用蚁剑连接,得到flag...
多场景 OkHttpClient 管理器 - Android 网络通信解决方案
下面是一个完整的 Android 实现,展示如何创建和管理多个 OkHttpClient 实例,分别用于长连接、普通 HTTP 请求和文件下载场景。 <?xml version"1.0" encoding"utf-8"?> <LinearLayout xmlns:android"http://schemas…...
安宝特方案丨XRSOP人员作业标准化管理平台:AR智慧点检验收套件
在选煤厂、化工厂、钢铁厂等过程生产型企业,其生产设备的运行效率和非计划停机对工业制造效益有较大影响。 随着企业自动化和智能化建设的推进,需提前预防假检、错检、漏检,推动智慧生产运维系统数据的流动和现场赋能应用。同时,…...
MVC 数据库
MVC 数据库 引言 在软件开发领域,Model-View-Controller(MVC)是一种流行的软件架构模式,它将应用程序分为三个核心组件:模型(Model)、视图(View)和控制器(Controller)。这种模式有助于提高代码的可维护性和可扩展性。本文将深入探讨MVC架构与数据库之间的关系,以…...
2025盘古石杯决赛【手机取证】
前言 第三届盘古石杯国际电子数据取证大赛决赛 最后一题没有解出来,实在找不到,希望有大佬教一下我。 还有就会议时间,我感觉不是图片时间,因为在电脑看到是其他时间用老会议系统开的会。 手机取证 1、分析鸿蒙手机检材&#x…...
DBAPI如何优雅的获取单条数据
API如何优雅的获取单条数据 案例一 对于查询类API,查询的是单条数据,比如根据主键ID查询用户信息,sql如下: select id, name, age from user where id #{id}API默认返回的数据格式是多条的,如下: {&qu…...
Spring AI 入门:Java 开发者的生成式 AI 实践之路
一、Spring AI 简介 在人工智能技术快速迭代的今天,Spring AI 作为 Spring 生态系统的新生力量,正在成为 Java 开发者拥抱生成式 AI 的最佳选择。该框架通过模块化设计实现了与主流 AI 服务(如 OpenAI、Anthropic)的无缝对接&…...
06 Deep learning神经网络编程基础 激活函数 --吴恩达
深度学习激活函数详解 一、核心作用 引入非线性:使神经网络可学习复杂模式控制输出范围:如Sigmoid将输出限制在(0,1)梯度传递:影响反向传播的稳定性二、常见类型及数学表达 Sigmoid σ ( x ) = 1 1 +...
