使用Pytoch实现Opencv warpAffine方法
随着深度学习的不断发展,GPU/NPU的算力也越来越强,对于一些传统CV计算也希望能够直接在GPU/NPU上进行,例如Opencv的warpAffine方法。Opencv的warpAffine的功能主要是做仿射变换,如果不了解仿射变换的请自行了解。由于Pytorch的图像坐标系(图像左上角对应坐标(-1, -1)
右下角对应坐标(1, 1)
)与Opencv的坐标系(图像左上角对应坐标(0, 0)
右下角对应坐标(w - 1, h - 1)
)有差异,故无法直接使用Opencv的warp矩阵对Pytorch数据进行变换。
主要参考文章:https://zhuanlan.zhihu.com/p/349741938
本文逻辑推理部分主要是参照上述的参考文章,这里再简单推导一遍。后面会给出基于该公式推导的Pytorch实现。
下面公式简单介绍了原始图片中 ( x 1 , y 1 ) (x_1, y_1) (x1,y1)点通过仿射变化到输出图片 ( x 2 , y 2 ) (x_2, y_2) (x2,y2)点的过程,假设 ( x , y ) (x, y) (x,y)对应Opencv图像坐标系。
[ x 2 y 2 1 ] = [ a b c d e f 0 0 1 ] [ x 1 y 1 1 ] \begin{bmatrix} x_2\\ y_2 \\ 1 \end{bmatrix} = \begin{bmatrix} a & b & c\\ d & e & f\\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1\\ y_1 \\ 1 \end{bmatrix} x2y21 = ad0be0cf1 x1y11
现在要将Opencv图像坐标系下的 ( x 1 , y 1 ) (x_1, y_1) (x1,y1)点映射到Pytorch的图像坐标系下 ( u 1 , v 1 ) (u_1, v_1) (u1,v1)点,由于Pytorch的图像坐标系是从-1到1,所以对Opencv的坐标做如下变化即可。注,由于Opencv坐标从0开始,所以对于原图宽为src_w
,高为src_h
实际右下角的坐标应该是 ( s r c w − 1 , s r c h − 1 ) (src_w - 1, src_h - 1) (srcw−1,srch−1)。
u 1 = x 1 − s r c w − 1 2 s r c w − 1 2 = 2 x 1 s r c w − 1 − 1 u_1 = \frac{x_1 - \frac{src_w - 1}{2} }{\frac{src_w - 1}{2}} = \frac{2x_1}{src_w - 1} -1 u1=2srcw−1x1−2srcw−1=srcw−12x1−1
v 1 = y 1 − s r c h − 1 2 s r c h − 1 2 = 2 y 1 s r c h − 1 − 1 v_1 = \frac{y_1 - \frac{src_h - 1}{2} }{\frac{src_h - 1}{2}} = \frac{2y_1}{src_h - 1} -1 v1=2srch−1y1−2srch−1=srch−12y1−1
写成矩阵乘的形式:
[ u 1 v 1 1 ] = [ 2 s r c w − 1 0 − 1 0 2 s r c h − 1 − 1 0 0 1 ] [ x 1 y 1 1 ] \begin{bmatrix} u_1\\ v_1 \\ 1 \end{bmatrix} = \begin{bmatrix} \frac{2}{src_w - 1} & 0 & -1\\ 0 & \frac{2}{src_h - 1} & -1\\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1\\ y_1 \\ 1 \end{bmatrix} u1v11 = srcw−12000srch−120−1−11 x1y11
那么同理将仿射变化后Opencv图像坐标系下的 ( x 2 , y 2 ) (x_2, y_2) (x2,y2)点映射到Pytorch的图像坐标系下 ( u 2 , v 2 ) (u_2, v_2) (u2,v2)点,其中dst_w
为仿射变化后输出图片的宽度,dst_h
为仿射变化后输出图片的高度:
[ u 2 v 2 1 ] = [ 2 d s t w − 1 0 − 1 0 2 d s t h − 1 − 1 0 0 1 ] [ x 2 y 2 1 ] \begin{bmatrix} u_2\\ v_2 \\ 1 \end{bmatrix} = \begin{bmatrix} \frac{2}{dst_w - 1} & 0 & -1\\ 0 & \frac{2}{dst_h - 1} & -1\\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_2\\ y_2 \\ 1 \end{bmatrix} u2v21 = dstw−12000dsth−120−1−11 x2y21
然后将上面两个公式代入最开始的仿射变化公式中:
[ 2 d s t w − 1 0 − 1 0 2 d s t h − 1 − 1 0 0 1 ] − 1 [ u 2 v 2 1 ] = [ a b c d e f 0 0 1 ] [ 2 s r c w − 1 0 − 1 0 2 s r c h − 1 − 1 0 0 1 ] − 1 [ u 1 v 1 1 ] \begin{bmatrix} \frac{2}{dst_w - 1} & 0 & -1\\ 0 & \frac{2}{dst_h - 1} & -1\\ 0 & 0 & 1 \end{bmatrix}^{-1} \begin{bmatrix} u_2\\ v_2 \\ 1 \end{bmatrix} = \begin{bmatrix} a & b & c\\ d & e & f\\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \frac{2}{src_w - 1} & 0 & -1\\ 0 & \frac{2}{src_h - 1} & -1\\ 0 & 0 & 1 \end{bmatrix}^{-1} \begin{bmatrix} u_1\\ v_1 \\ 1 \end{bmatrix} dstw−12000dsth−120−1−11 −1 u2v21 = ad0be0cf1 srcw−12000srch−120−1−11 −1 u1v11
整理得到:
[ u 2 v 2 1 ] = [ 2 d s t w − 1 0 − 1 0 2 d s t h − 1 − 1 0 0 1 ] [ a b c d e f 0 0 1 ] [ 2 s r c w − 1 0 − 1 0 2 s r c h − 1 − 1 0 0 1 ] − 1 [ u 1 v 1 1 ] \begin{bmatrix} u_2\\ v_2 \\ 1 \end{bmatrix} = \begin{bmatrix} \frac{2}{dst_w - 1} & 0 & -1\\ 0 & \frac{2}{dst_h - 1} & -1\\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} a & b & c\\ d & e & f\\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \frac{2}{src_w - 1} & 0 & -1\\ 0 & \frac{2}{src_h - 1} & -1\\ 0 & 0 & 1 \end{bmatrix}^{-1} \begin{bmatrix} u_1\\ v_1 \\ 1 \end{bmatrix} u2v21 = dstw−12000dsth−120−1−11 ad0be0cf1 srcw−12000srch−120−1−11 −1 u1v11
引用参考文章中大佬的原话,这个暂时没在Pytorch官方文档中找到,但是通过实验,确实如此。
affine_grid定义为目标图到原图的变换
所以,Pytorch中使用的theta
实际是从 ( u 2 , v 2 ) (u_2, v_2) (u2,v2)到 ( u 1 , v 1 ) (u_1, v_1) (u1,v1)的矩阵:
[ u 1 v 1 1 ] = [ 2 s r c w − 1 0 − 1 0 2 s r c h − 1 − 1 0 0 1 ] [ a b c d e f 0 0 1 ] − 1 [ 2 d s t w − 1 0 − 1 0 2 d s t h − 1 − 1 0 0 1 ] − 1 [ u 2 v 2 1 ] \begin{bmatrix} u_1\\ v_1 \\ 1 \end{bmatrix} = \begin{bmatrix} \frac{2}{src_w - 1} & 0 & -1\\ 0 & \frac{2}{src_h - 1} & -1\\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} a & b & c\\ d & e & f\\ 0 & 0 & 1 \end{bmatrix}^{-1} \begin{bmatrix} \frac{2}{dst_w - 1} & 0 & -1\\ 0 & \frac{2}{dst_h - 1} & -1\\ 0 & 0 & 1 \end{bmatrix}^{-1} \begin{bmatrix} u_2\\ v_2 \\ 1 \end{bmatrix} u1v11 = srcw−12000srch−120−1−11 ad0be0cf1 −1 dstw−12000dsth−120−1−11 −1 u2v21
故Opencv使用的theta
到Pytorch的theta
变换过程如下:
t h e t a ( p y t o r c h ) = [ 2 s r c w − 1 0 − 1 0 2 s r c h − 1 − 1 0 0 1 ] t h e t a ( o p e n c v ) − 1 [ 2 d s t w − 1 0 − 1 0 2 d s t h − 1 − 1 0 0 1 ] − 1 theta_{(pytorch)} = \begin{bmatrix} \frac{2}{src_w - 1} & 0 & -1\\ 0 & \frac{2}{src_h - 1} & -1\\ 0 & 0 & 1 \end{bmatrix} {theta}^{-1}_{(opencv)} \begin{bmatrix} \frac{2}{dst_w - 1} & 0 & -1\\ 0 & \frac{2}{dst_h - 1} & -1\\ 0 & 0 & 1 \end{bmatrix}^{-1} theta(pytorch)= srcw−12000srch−120−1−11 theta(opencv)−1 dstw−12000dsth−120−1−11 −1
最后给出对应代码实现:
"""
pip install numpy
pip install opencv-python
pip install opencv-python-headless
"""
import numpy as np
import cv2
import torch
import torch.nn.functional as Fdef cal_torch_theta(opencv_theta: np.ndarray, src_h: int, src_w: int, dst_h: int, dst_w: int):m = np.concatenate([opencv_theta, np.array([[0., 0., 1.]], dtype=np.float32)])m_inv = np.linalg.inv(m)a = np.array([[2 / (src_w - 1), 0., -1.],[0., 2 / (src_h - 1), -1.],[0., 0., 1.]], dtype=np.float32)b = np.array([[2 / (dst_w - 1), 0., -1.],[0., 2 / (dst_h - 1), -1.],[0., 0., 1.]], dtype=np.float32)b_inv = np.linalg.inv(b)pytorch_m = a @ m_inv @ b_invreturn torch.as_tensor(pytorch_m[:2], dtype=torch.float32)def main():img_bgr = cv2.imread("1.png")src_h, src_w, _ = img_bgr.shapeprint(f"src image h:{src_h}, w:{src_w}")dst_h = src_h * 2dst_w = src_w * 2print(f"dst image h:{src_h}, w:{src_w}")theta = cv2.getRotationMatrix2D(center=(src_w // 2, src_h // 2), angle=-30, scale=2)# using opencv warpAffinewarp_img_bgr = cv2.warpAffine(src=img_bgr,M=theta,dsize=(dst_w, dst_h),flags=cv2.INTER_LINEAR,borderValue=(0, 0, 0))cv2.imwrite("warp_img.jpg", warp_img_bgr)# using pytorch grid_sampletorch_img_bgr = torch.as_tensor(img_bgr, dtype=torch.float32).unsqueeze(0).permute([0, 3, 1, 2]) # [N,C,H,W]torch_theta = cal_torch_theta(theta, src_h, src_w, dst_h, dst_w).unsqueeze(0) # [N, 2, 3]grid = F.affine_grid(torch_theta, size=[1, 3, dst_h, dst_w])torch_warp_img_bgr = F.grid_sample(torch_img_bgr, grid=grid, mode="bilinear", padding_mode="zeros")torch_warp_img_bgr = torch_warp_img_bgr.permute([0, 2, 3, 1]).squeeze(0) # [H, W, C]cv2.imwrite("torch_warp_img.jpg", torch_warp_img_bgr.numpy())# save concat imgcv2.imwrite("compare_warp_img.jpg",np.concatenate([warp_img_bgr, torch_warp_img_bgr.numpy()], axis=1))if __name__ == '__main__':main()
下图是生成的compare_warp_img.jpg
图片,左边是通过Opencv warpAffine得到的图片,右边是通过Pytorch grid_sample得到的图片。可以看到基本是一致,如果使用专业的图像对比工具还是能看到像素差异(很难完全对齐)。
相关文章:

使用Pytoch实现Opencv warpAffine方法
随着深度学习的不断发展,GPU/NPU的算力也越来越强,对于一些传统CV计算也希望能够直接在GPU/NPU上进行,例如Opencv的warpAffine方法。Opencv的warpAffine的功能主要是做仿射变换,如果不了解仿射变换的请自行了解。由于Pytorch的图像…...

Hello World
世界上最著名的程序 from fastapi import FastAPIapp FastAPI()app.get("/") async def root():return {"message": "Hello World"}app.get("/hello/{name}") async def say_hello(name: str):return {"message": f"…...

【Python】Python读Excel文件生成xml文件
目录 前言 正文 1.Python基础学习 2.Python读取Excel表格 2.1安装xlrd模块 2.2使用介绍 2.2.1常用单元格中的数据类型 2.2.2 导入模块 2.2.3打开Excel文件读取数据 2.2.4常用函数 2.2.5代码测试 2.2.6 Python操作Excel官方网址 3.Python创建xml文件 3.1 xml语法…...

c++--类型行为控制
1.c的类 1.1.c的类关键点 c类型的关键点在于类存在继承。在此基础上,类存在构造,赋值,析构三类通用的关键行为。 类型提供了构造函数,赋值运算符,析构函数来让我们控制三类通用行为的具体表现。 为了清楚的说明类的构…...

笔记64:Bahdanau 注意力
本地笔记地址:D:\work_file\(4)DeepLearning_Learning\03_个人笔记\3.循环神经网络\第10章:动手学深度学习~注意力机制 a a a a a a a a a a a...
面试官问:如何手动触发垃圾回收?幸好昨天复习到了
在Java中,手动触发垃圾回收可以使用 System.gc() 方法。但需要注意,调用 System.gc() 并不能确保立即执行垃圾回收,因为具体的垃圾回收行为是由Java虚拟机决定的,而不受程序员直接控制。 public class GarbageCollectionExample …...

操作系统的运行机制+中断和异常
一、CPU状态 在CPU设计和生产的时候就划分了特权指令和非特叔指令,因此CPU执行一条指令前就能断出其类型 CPU有两种状态,“内核态”和“用户态” 处于内核态时,说明此时正在运行的是内核程序,此时可以执行特权指令。 处于用户态…...

Python实战:批量加密Excel文件指南
更多Python学习内容:ipengtao.com 大家好,我是彭涛,今天为大家分享 Python实战:批量加密Excel文件指南,全文3800字,阅读大约10分钟。 在日常工作中,保护敏感数据是至关重要的。本文将引导你通过…...

二叉树链式结构的实现和二叉树的遍历以及判断完全二叉树
二叉树的实现 定义结构体 我们首先定义一个结构来存放二叉树的节点 结构体里分别存放左子节点和右子节点以及节点存放的数据 typedef int BTDataType; typedef struct BinaryTreeNode {BTDataType data;struct BinaryTreeNode* left;struct BinaryTreeNode* right; }BTNode;…...

vue中的动画组件使用及如何在vue中使用animate.css
“< Transition >” 是一个内置组件,这意味着它在任意别的组件中都可以被使用,无需注册。它可以将进入和离开动画应用到通过默认插槽传递给它的元素或组件上。进入或离开可以由以下的条件之一触发: 由 v-if 所触发的切换由 v-show 所触…...
qt 5.15.2 网络文件下载功能
qt 5.15.2 网络文件下载功能 #include <QCoreApplication>#include <iostream> #include <QFile> #include <QTextStream> // #include <QtCore> #include <QtNetwork> #include <QNetworkAccessManager> #include <QNetworkRep…...
Wifi adb 操作步骤
1.连接usb 到主机 手机开起热点,电脑和车机连接手机,或者电脑开热点,车机连接电脑,车机和电脑连接同一个网络 因为需要先使用usb,后面切换到wifi usb 2.查看车机ip地址,和电脑ip地址 电脑win键r 输入cmd…...
湿货 - 231206 - 关于如何构造输入输出数据并读写至文件中
TAG - 造数据、读写文件 造数据、读写文件 造数据、读写文件//*.in // #include<bits/stdc.h> using namespace std;/* *********** *********** 全局 ********** *********** */ string Pre_File_Name; ofstream IN_cout; int idx;void Modify_ABS_Path( string& …...

EasyMicrobiome-易扩增子、易宏基因组等分析流程依赖常用软件、脚本文件和数据库注释文件
啥也不说了,这个好用,给大家推荐:YongxinLiu/EasyMicrobiome (github.com) 大家先看看引用文献吧,很有用:https://doi.org/10.1002/imt2.83 还有这个,后面马上介绍:YongxinLiu/EasyAmplicon: E…...
【Python百宝箱】漫游Python数据可视化宇宙:pyspark、dash、streamlit、matplotlib、seaborn全景式导览
Python数据可视化大比拼:从大数据处理到交互式Web应用 前言 在当今数字时代,数据可视化是解释和传达信息的不可或缺的工具之一。本文将深入探讨Python中流行的数据可视化库,从大数据处理到交互式Web应用,为读者提供全面的了解和…...

企业数字档案馆室建设指南
数字化时代,企业数字化转型已经成为当下各行业发展的必然趋势。企业数字化转型不仅仅是IT系统的升级,也包括企业内部各种文件、档案、合同等信息的数字化管理。因此,建设数字档案馆室也变得尤为重要。本篇文章将为您介绍企业数字档案馆室建设…...
JavaScript中处理时间差
ES6版本 function countdown(endTime, includeSeconds true) {// 获取当前时间let now new Date();// 将传入的结束时间字符串转换为日期对象let endDateTime new Date(endTime);// 检查传入的时间字符串是否只包含日期(不包含时分秒)if (endTime.tr…...

Multidimensional Scaling(MDS多维缩放)算法及其应用
在这篇博客中,我将与大家分享在流形分析领域的一个非常重要的方法,即多维缩放MDS。整体来说,该方法提供了一种将内蕴距离映射到显性欧氏空间的计算,为非刚性形状分析提供了一种解决方案。当初就是因为读了Bronstein的相关工作【1】…...

单片机_RTOS_架构
一. RTOS的概念 // 经典单片机程序 void main() {while (1){喂一口饭();回一个信息();} } ------------------------------------------------------ // RTOS程序 喂饭() {while (1){喂一口饭();} }回信息() {while (1){回一个信息();} }void main() {create_task(喂饭);cr…...
Golang rsa 验证
一下代码用于rsa 签名的验签, 签名可以用其他语言产生。也可以用golang生成。 package mainimport ("crypto""crypto/rsa""crypto/sha256""crypto/x509""encoding/pem""errors""fmt" )fun…...

Flask RESTful 示例
目录 1. 环境准备2. 安装依赖3. 修改main.py4. 运行应用5. API使用示例获取所有任务获取单个任务创建新任务更新任务删除任务 中文乱码问题: 下面创建一个简单的Flask RESTful API示例。首先,我们需要创建环境,安装必要的依赖,然后…...

Lombok 的 @Data 注解失效,未生成 getter/setter 方法引发的HTTP 406 错误
HTTP 状态码 406 (Not Acceptable) 和 500 (Internal Server Error) 是两类完全不同的错误,它们的含义、原因和解决方法都有显著区别。以下是详细对比: 1. HTTP 406 (Not Acceptable) 含义: 客户端请求的内容类型与服务器支持的内容类型不匹…...
Leetcode 3576. Transform Array to All Equal Elements
Leetcode 3576. Transform Array to All Equal Elements 1. 解题思路2. 代码实现 题目链接:3576. Transform Array to All Equal Elements 1. 解题思路 这一题思路上就是分别考察一下是否能将其转化为全1或者全-1数组即可。 至于每一种情况是否可以达到…...

突破不可导策略的训练难题:零阶优化与强化学习的深度嵌合
强化学习(Reinforcement Learning, RL)是工业领域智能控制的重要方法。它的基本原理是将最优控制问题建模为马尔可夫决策过程,然后使用强化学习的Actor-Critic机制(中文译作“知行互动”机制),逐步迭代求解…...

基于距离变化能量开销动态调整的WSN低功耗拓扑控制开销算法matlab仿真
目录 1.程序功能描述 2.测试软件版本以及运行结果展示 3.核心程序 4.算法仿真参数 5.算法理论概述 6.参考文献 7.完整程序 1.程序功能描述 通过动态调整节点通信的能量开销,平衡网络负载,延长WSN生命周期。具体通过建立基于距离的能量消耗模型&am…...

PPT|230页| 制造集团企业供应链端到端的数字化解决方案:从需求到结算的全链路业务闭环构建
制造业采购供应链管理是企业运营的核心环节,供应链协同管理在供应链上下游企业之间建立紧密的合作关系,通过信息共享、资源整合、业务协同等方式,实现供应链的全面管理和优化,提高供应链的效率和透明度,降低供应链的成…...
Java - Mysql数据类型对应
Mysql数据类型java数据类型备注整型INT/INTEGERint / java.lang.Integer–BIGINTlong/java.lang.Long–––浮点型FLOATfloat/java.lang.FloatDOUBLEdouble/java.lang.Double–DECIMAL/NUMERICjava.math.BigDecimal字符串型CHARjava.lang.String固定长度字符串VARCHARjava.lang…...
【Go】3、Go语言进阶与依赖管理
前言 本系列文章参考自稀土掘金上的 【字节内部课】公开课,做自我学习总结整理。 Go语言并发编程 Go语言原生支持并发编程,它的核心机制是 Goroutine 协程、Channel 通道,并基于CSP(Communicating Sequential Processes࿰…...
TRS收益互换:跨境资本流动的金融创新工具与系统化解决方案
一、TRS收益互换的本质与业务逻辑 (一)概念解析 TRS(Total Return Swap)收益互换是一种金融衍生工具,指交易双方约定在未来一定期限内,基于特定资产或指数的表现进行现金流交换的协议。其核心特征包括&am…...
HTML前端开发:JavaScript 常用事件详解
作为前端开发的核心,JavaScript 事件是用户与网页交互的基础。以下是常见事件的详细说明和用法示例: 1. onclick - 点击事件 当元素被单击时触发(左键点击) button.onclick function() {alert("按钮被点击了!&…...