当前位置: 首页 > news >正文

2023新优化应用:RIME-CNN-LSTM-Attention超前24步多变量回归预测算法

程序平台:适用于MATLAB 2023版及以上版本。

霜冰优化算法是2023年发表于SCI、中科院二区Top期刊《Neurocomputing》上的新优化算法,现如今还未有RIME优化算法应用文献哦。RIME主要对霜冰的形成过程进行模拟,将其巧妙地应用于算法搜索领域。

该文献对RIME进行了定性分析实验,以阐明该算法在寻找最优解过程中的特点。然后,对RIME在经典的IEEE CEC2017和最新的IEEE CEC2022测试集中的42个函数进行了性能测试。将提出的算法与10个经典算法和10个最新改进算法进行比较,以验证其性能优势。此外,文献还设计了RIME的参数分析实验,以探讨该算法在运行不同参数和处理不同问题方面的潜力。最后,将RIME应用于五个实际工程问题,以验证其在实际问题中的有效性和优越性。

①通过模拟软霜颗粒的运动,作者提出了一种全新的算法搜索策略,即软霜搜索策略。这个策略的灵感来自于对软霜颗粒在运动中的特性的模拟。

②同时,文中还模拟了硬霜颗粒之间的交叉行为,提出了硬霜穿刺机制,以更好地利用这一算法。这个穿刺机制通过模拟硬霜颗粒相互交叉的方式,为算法引入了一种新的优化手段。

③最后,在元启发式算法的选择机制方面进行了改进,引入了正向贪婪选择机制。通过结合软霜搜索策略、硬霜穿刺机制和正向贪婪选择机制构建RIME算法。

我们利用该高创新算法对我们的CNN-LSTM-Attention时序和空间特征结合-融合注意力机制的回归预测程序代码中的超参数进行优化。

代码说明:霜冰优化算法(RIME)、卷积神经网络(CNN)和长短期记忆网络(LSTM)融合多头自注意力机制(Multihead SelfAttention)的超前24步多变量时间序列回归预测算法。

功能:

1、多变量特征输入,单序列变量输出,输入前一天的特征,实现后一天的预测,超前24步预测。

2、通过霜冰优化算法优化学习率、卷积核大小、神经元个数3个关键参数,以最小MAPE为目标函数。

3、提供损失、RMSE迭代变化极坐标图;网络的特征可视化图;测试对比图;适应度曲线。

4、提供MAPE、RMSE、MAE等计算结果展示。

适用领域:

风速预测、光伏功率预测、发电功率预测、碳价预测等多种应用。

数据集格式:

前一天18个气象特征,采样时间为24小时,输出为第二天的24小时的功率出力,也就是18×24输入,1×24输出,一共有75个这样的样本。

预测值与实际值对比结果:

训练特征可视化:

训练误差曲线的极坐标形式(误差由内到外越来越接近0):

适应度曲线:

部分核心代码:

function [Best_rime_rate, Best_pos, Convergence_curve, bestPred, bestNet, bestInfo] = RIME(SearchAgents_no, Max_iter, lb, ub, dim, fobj)% 初始化位置Best_rime = zeros(1, dim);Best_rime_rate = inf; % 用于最大化问题,请将此值改为 -inffor i = 1:dimRimepop(:, i) = lb(i) + rand(SearchAgents_no, 1) .* (ub(i) - lb(i));   % 初始种群endLb = lb .* ones(1, dim); % 下边界Ub = ub .* ones(1, dim); % 上边界it = 1; % 迭代次数Convergence_curve = zeros(1, Max_iter);Rime_rates = zeros(1, SearchAgents_no); % 初始化适应度值newRime_rates = zeros(1, SearchAgents_no);W = 5; % 软霜冰参数,在论文第4.3.1节中有详细讨论% 计算初始位置的适应度值for i = 1:SearchAgents_no[Rime_rates(1, i),Value{i},Net{i},Info{i}] = fobj(Rimepop(i, :)); % 计算每个搜索体的适应度值% 进行贪婪选择if Rime_rates(1, i) < Best_rime_rateBest_rime_rate = Rime_rates(1, i);Best_rime = Rimepop(i, :);bestPred = Value{i};bestNet = Net{i};bestInfo = Info{i};endend% 主循环while it <= Max_iterRimeFactor = (rand - 0.5) * 2 * cos((pi * it / (Max_iter / 10))) * (1 - round(it * W / Max_iter) / W); % 公式(3),(4),(5)的参数E = (it / Max_iter)^0.5; % 公式(6)newRimepop = Rimepop; % 记录新的种群normalized_rime_rates = normr(Rime_rates); % 公式(7)的参数for i = 1:SearchAgents_nofor j = 1:dim% 软霜冰搜索策略r1 = rand();if r1 < EnewRimepop(i, j) = Best_rime(1, j) + RimeFactor * ((Ub(j) - Lb(j)) * rand + Lb(j)); % 公式(3)end% 硬霜冰穿刺机制r2 = rand();if r2 < normalized_rime_rates(i)newRimepop(i, j) = Best_rime(1, j); % 公式(7)endendendfor i = 1:SearchAgents_no% 边界吸收Flag4ub = newRimepop(i, :) > ub;Flag4lb = newRimepop(i, :) < lb;newRimepop(i, :) = (newRimepop(i, :) .* ~(Flag4ub + Flag4lb)) + ub .* Flag4ub + lb .* Flag4lb;[newRime_rates(1, i),newValue{i},newNet{i},newInfo{i}] = fobj(newRimepop(i, :));% 正向贪婪选择机制if newRime_rates(1, i) < Rime_rates(1, i)Rime_rates(1, i) = newRime_rates(1, i);Rimepop(i, :) = newRimepop(i, :);Value{i} = newValue{i};Net{i} = newNet{i};Info{i} = newInfo{i};完整代码:https://mbd.pub/o/bread/mbd-ZZealpds

部分图片来源于网络,侵权联系删除!

关注小编会不定期推送高创新型、高质量的学习资料、文章程序代码,为你的科研加油助力~

相关文章:

2023新优化应用:RIME-CNN-LSTM-Attention超前24步多变量回归预测算法

程序平台&#xff1a;适用于MATLAB 2023版及以上版本。 霜冰优化算法是2023年发表于SCI、中科院二区Top期刊《Neurocomputing》上的新优化算法&#xff0c;现如今还未有RIME优化算法应用文献哦。RIME主要对霜冰的形成过程进行模拟&#xff0c;将其巧妙地应用于算法搜索领域。 …...

RNN:文本生成

文章目录 一、完整代码二、过程实现2.1 导包2.2 数据准备2.3 字符分词2.4 构建数据集2.5 定义模型2.6 模型训练2.7 模型推理 三、整体总结 采用RNN和unicode分词进行文本生成 一、完整代码 这里我们使用tensorflow实现&#xff0c;代码如下&#xff1a; # 完整代码在这里 imp…...

Rust UI开发(五):iced中如何进行页面布局(pick_list的使用)?(串口调试助手)

注&#xff1a;此文适合于对rust有一些了解的朋友 iced是一个跨平台的GUI库&#xff0c;用于为rust语言程序构建UI界面。 这是一个系列博文&#xff0c;本文是第五篇&#xff0c;前四篇链接&#xff1a; 1、Rust UI开发&#xff08;一&#xff09;&#xff1a;使用iced构建UI时…...

Linux学习笔记2

web服务器部署&#xff1a; 1.装包&#xff1a; [rootlocalhost ~]# yum -y install httpd 2.配置一个首页&#xff1a; [rootlocalhost ~]# echo i love yy > /var/www/html/index.html 启动服务&#xff1a;[rootlocalhost ~]# systemctl start httpd Ctrl W以空格为界…...

数据结构算法-插入排序算法

引言 玩纸牌 的时候。往往 需要将牌从乱序排列变成有序排列 这就是插入排序 插入排序算法思想 先看图 首先第一个元素 我默认已有序 那我们从第二个元素开始&#xff0c;依次插入到前面已有序的部分中。具体来说&#xff0c;我们将第二个元素与第一个元素比较&#xff0c;…...

安装Kuboard管理K8S集群

目录 第一章.安装Kuboard管理K8S集群 1.安装kuboard 2.绑定K8S集群&#xff0c;完成信息设定 3.内网安装 第二章.kuboard-spray安装K8S 2.1.先拉镜像下来 2.2.之后打开后&#xff0c;先熟悉功能&#xff0c;注意版本 2.3.打开资源包管理&#xff0c;选择符合自己服务器…...

网络安全行业大模型调研总结

随着人工智能技术的发展&#xff0c;安全行业大模型SecLLM&#xff08;security Large Language Model&#xff09;应运而生&#xff0c;可应用于代码漏洞挖掘、安全智能问答、多源情报整合、勒索情报挖掘、安全评估、安全事件研判等场景。 参考&#xff1a; 1、安全行业大模…...

Linux AMH服务器管理面板本地安装与远程访问

最近&#xff0c;我发现了一个超级强大的人工智能学习网站。它以通俗易懂的方式呈现复杂的概念&#xff0c;而且内容风趣幽默。我觉得它对大家可能会有所帮助&#xff0c;所以我在此分享。点击这里跳转到网站。 文章目录 1. Linux 安装AMH 面板2. 本地访问AMH 面板3. Linux安装…...

Sharding-Jdbc(3):Sharding-Jdbc分表

1 分表分库 LogicTable 数据分片的逻辑表&#xff0c;对于水平拆分的数据库(表)&#xff0c;同一类表的总称。 订单信息表拆分为2张表,分别是t_order_0、t_order_1&#xff0c;他们的逻辑表名为t_order。 ActualTable 在分片的数据库中真实存在的物理表。即上个示例中的t_…...

zookeeper集群 +kafka集群

1.zookeeper kafka3.0之前依赖于zookeeper zookeeper是一个开源&#xff0c;分布式的架构&#xff0c;提供协调服务&#xff08;Apache项目&#xff09; 基于观察者模式涉及的分布式服务管理架构 存储和管理数据&#xff0c;分布式节点上的服务接受观察者的注册&#xff0c…...

2022年全国大学生数据分析大赛医药电商销售数据分析求解全过程论文及程序

2022年全国大学生数据分析大赛 医药电商销售数据分析 原题再现&#xff1a; 问题背景   20 世纪 90 年代是电子数据交换时代&#xff0c;中国电子商务开始起步并初见雏形&#xff0c;随后 Web 技术爆炸式成长使电子商务处于蓬勃发展阶段&#xff0c;目前互联网信息碎片化以…...

Python版本与opencv版本的对应关系

python版本要和opencv版本相对应&#xff0c;否则安装的时候会报错。 可以到Links for opencv-python上面查看python版本和opencv版本的对应关系&#xff0c;如图&#xff0c;红框内是python版本&#xff0c;绿框内是opencv版本。 查看自己的python版本后&#xff0c;使用下面…...

【开源视频联动物联网平台】LiteFlow

LiteFlow是一个轻量且强大的国产规则引擎框架&#xff0c;可用于复杂的组件化业务的编排领域。它基于规则文件来编排流程&#xff0c;支持xml、json、yml三种规则文件写法方式&#xff0c;再复杂的逻辑过程都能轻易实现。LiteFlow于2020年正式开源&#xff0c;2021年获得开源中…...

家用智能门锁——智能指纹锁方案

智能指纹锁产品功能&#xff1a; 1&#xff1a;指纹识别技术&#xff1a;光学传感器、半导体传感器或超声波传感器等。 2&#xff1a;指纹容量&#xff1a;智能指纹锁可以存储的指纹数量&#xff0c;通常在几十到几百个指纹之间。 3&#xff1a;解锁时间&#xff1a;指纹识别和…...

Qt6 QRibbon 一键美化Qt界面

强烈推荐一个 github 项目&#xff1a; https://github.com/gnibuoz/QRibbon 作用&#xff1a; 在几乎不修改任何你自己代码的情况下&#xff0c;一键美化你的 UI 界面。 代码环境&#xff1a;使用 VS2019 编译 Qt6 GUI 程序&#xff0c;继承 QMainWindow 窗口类 一、使用方法 …...

JAVA IO:NIO

1.阻塞 IO 模型 ​ 最传统的一种 IO 模型&#xff0c;即在读写数据过程中会发生阻塞现象。当用户线程发出 IO 请求之后&#xff0c;内核会去查看数据是否就绪&#xff0c;如果没有就绪就会等待数据就绪&#xff0c;而用户线程就会处于阻塞状态&#xff0c;用户线程交出 CPU。当…...

Python 在控制台打印带颜色的信息

#格式&#xff1a;  设置颜色开始 &#xff1a;\033[显示方式;前景色;背景色m #说明&#xff1a; 前景色 背景色 颜色 --------------------------------------- 30 40 黑色 31 41 红色 32 …...

SQL Server 数据库,创建触发器避免数据被更改

5.4触发器 触发器是一种特殊类型的存储过程&#xff0c;当表中的数据发生更新时将自动调用&#xff0c;以响应INSERT、 UPDATE 或DELETE 语句。 5.4.1什么是触发器 1.触发器的概念 触发器是在对表进行插入、更新或删除操作时自动执行的存储过程&#xff0c;触发器通常用于强…...

C语言实现植物大战僵尸(完整版)

实现这个游戏需要Easy_X 这个在我前面一篇C之番外篇爱心代码有程序教你怎么下载&#xff0c;大家可自行查看 然后就是需要植物大战僵尸的素材和音乐&#xff0c;需要的可以在评论区 首先是main.cpp //开发日志 //1导入素材 //2实现最开始的游戏场景 //3实现游戏顶部的工具栏…...

基于YOLOv8深度学习的火焰烟雾检测系统【python源码+Pyqt5界面+数据集+训练代码】目标检测、深度学习实战

《博主简介》 小伙伴们好&#xff0c;我是阿旭。专注于人工智能、AIGC、python、计算机视觉相关分享研究。 ✌更多学习资源&#xff0c;可关注公-仲-hao:【阿旭算法与机器学习】&#xff0c;共同学习交流~ &#x1f44d;感谢小伙伴们点赞、关注&#xff01; 《------往期经典推…...

springboot 百货中心供应链管理系统小程序

一、前言 随着我国经济迅速发展&#xff0c;人们对手机的需求越来越大&#xff0c;各种手机软件也都在被广泛应用&#xff0c;但是对于手机进行数据信息管理&#xff0c;对于手机的各种软件也是备受用户的喜爱&#xff0c;百货中心供应链管理系统被用户普遍使用&#xff0c;为方…...

反向工程与模型迁移:打造未来商品详情API的可持续创新体系

在电商行业蓬勃发展的当下&#xff0c;商品详情API作为连接电商平台与开发者、商家及用户的关键纽带&#xff0c;其重要性日益凸显。传统商品详情API主要聚焦于商品基本信息&#xff08;如名称、价格、库存等&#xff09;的获取与展示&#xff0c;已难以满足市场对个性化、智能…...

通过Wrangler CLI在worker中创建数据库和表

官方使用文档&#xff1a;Getting started Cloudflare D1 docs 创建数据库 在命令行中执行完成之后&#xff0c;会在本地和远程创建数据库&#xff1a; npx wranglerlatest d1 create prod-d1-tutorial 在cf中就可以看到数据库&#xff1a; 现在&#xff0c;您的Cloudfla…...

学校招生小程序源码介绍

基于ThinkPHPFastAdminUniApp开发的学校招生小程序源码&#xff0c;专为学校招生场景量身打造&#xff0c;功能实用且操作便捷。 从技术架构来看&#xff0c;ThinkPHP提供稳定可靠的后台服务&#xff0c;FastAdmin加速开发流程&#xff0c;UniApp则保障小程序在多端有良好的兼…...

06 Deep learning神经网络编程基础 激活函数 --吴恩达

深度学习激活函数详解 一、核心作用 引入非线性:使神经网络可学习复杂模式控制输出范围:如Sigmoid将输出限制在(0,1)梯度传递:影响反向传播的稳定性二、常见类型及数学表达 Sigmoid σ ( x ) = 1 1 +...

在Ubuntu24上采用Wine打开SourceInsight

1. 安装wine sudo apt install wine 2. 安装32位库支持,SourceInsight是32位程序 sudo dpkg --add-architecture i386 sudo apt update sudo apt install wine32:i386 3. 验证安装 wine --version 4. 安装必要的字体和库(解决显示问题) sudo apt install fonts-wqy…...

LabVIEW双光子成像系统技术

双光子成像技术的核心特性 双光子成像通过双低能量光子协同激发机制&#xff0c;展现出显著的技术优势&#xff1a; 深层组织穿透能力&#xff1a;适用于活体组织深度成像 高分辨率观测性能&#xff1a;满足微观结构的精细研究需求 低光毒性特点&#xff1a;减少对样本的损伤…...

前端工具库lodash与lodash-es区别详解

lodash 和 lodash-es 是同一工具库的两个不同版本&#xff0c;核心功能完全一致&#xff0c;主要区别在于模块化格式和优化方式&#xff0c;适合不同的开发环境。以下是详细对比&#xff1a; 1. 模块化格式 lodash 使用 CommonJS 模块格式&#xff08;require/module.exports&a…...

如何做好一份技术文档?从规划到实践的完整指南

如何做好一份技术文档&#xff1f;从规划到实践的完整指南 &#x1f31f; 嗨&#xff0c;我是IRpickstars&#xff01; &#x1f30c; 总有一行代码&#xff0c;能点亮万千星辰。 &#x1f50d; 在技术的宇宙中&#xff0c;我愿做永不停歇的探索者。 ✨ 用代码丈量世界&…...

python读取SQLite表个并生成pdf文件

代码用于创建含50列的SQLite数据库并插入500行随机浮点数据&#xff0c;随后读取数据&#xff0c;通过ReportLab生成横向PDF表格&#xff0c;包含格式化&#xff08;两位小数&#xff09;及表头、网格线等美观样式。 # 导入所需库 import sqlite3 # 用于操作…...