当前位置: 首页 > news >正文

自适应中值滤波器的python代码实现-----冈萨雷斯数字图像处理

基本原理:

自适应中值滤波器是一种图像处理技术,用于去除图像中的噪声。其原理是根据像素周围邻域内像素值的特性,动态地选择滤波器的大小和中值滤波的程度。

**邻域选择:**对于每个像素点,选取一个窗口或者邻域,通常是一个正方形或者矩形窗口,在这个窗口内进行滤波操作。
像素排序:对于选取的窗口内的像素值,按照大小进行排序,找出其中间值(中位数)。
**噪声检测:**比较中心像素值与中位数的差值,通过一定的阈值来判断这个窗口内是否存在噪声。如果中心像素值与中位数的差值超过了设定的阈值,说明这个像素可能受到了噪声的影响。
**滤波处理:**如果被判定为受噪声影响的像素,则将中心像素值替换为中位数值,否则保持原来的像素值不变。

自适应中值滤波器的优点是可以根据像素周围局部区域的情况来动态地调整滤波器的大小和中值滤波的程度,能够更好地适应不同类型和程度的噪声。但是,它也有可能在某些情况下无法有效去除噪声或者造成图像细节的损失,因此在实际应用中需要根据具体情况进行调整和优化。

在这里插入图片描述

编写代码,输出如下图所示的结果

在这里插入图片描述

注意:

这是一幅被胡椒和盐粒概率均为0.25的严重椒盐噪声污染的图像。结果依次显示了中值滤波器、自适应中值滤波器对该图像滤波的结果。注意观察自适应滤波器对图像清晰度和细节的较好保持。

代码实现

import cv2
import numpy as np
import skimage
from matplotlib import pyplot as pltimg = cv2.imread('Fig0514.tif',0)#中值滤波器
def median_filter(image, kernel):height, width = image.shape[:2]m, n = kernel.shape[:2]padding_h = int((m - 1) / 2)padding_w = int((n - 1) / 2)# 这样的填充方式,可以奇数核或者偶数核都能正确填充image_pad = np.pad(image, ((padding_h, m - 1 - padding_h), \(padding_w, n - 1 - padding_w)), mode="edge")image_result = np.zeros(image.shape)for i in range(height):for j in range(width):temp = image_pad[i:i + m, j:j + n]image_result[i, j] = np.median(temp)return image_resultdef adaptive_median_denoise(image, sxy=3, smax=7):epsilon = 1e-8height, width = image.shape[:2]m, n = smax, smaxpadding_h = int((m - 1) / 2)padding_w = int((n - 1) / 2)# 这样的填充方式,可以奇数核或者偶数核都能正确填充image_pad = np.pad(image, ((padding_h, m - 1 - padding_h), \(padding_w, n - 1 - padding_w)), mode="edge")img_new = np.zeros(image.shape)for i in range(padding_h, height + padding_h):for j in range(padding_w, width + padding_w):sxy = 3  # 每一轮都重置k = int(sxy / 2)block = image_pad[i - k:i + k + 1, j - k:j + k + 1]zxy = image[i - padding_h][j - padding_w]zmin = np.min(block)zmed = np.median(block)zmax = np.max(block)if zmin < zmed < zmax:if zmin < zxy < zmax:img_new[i - padding_h, j - padding_w] = zxyelse:img_new[i - padding_h, j - padding_w] = zmedelse:while True:sxy = sxy + 2k = int(sxy / 2)if zmin < zmed < zmax or sxy > smax:breakblock = image_pad[i - k:i + k + 1, j - k:j + k + 1]zmed = np.median(block)zmin = np.min(block)zmax = np.max(block)if zmin < zmed < zmax or sxy > smax:if zmin < zxy < zmax:img_new[i - padding_h, j - padding_w] = zxyelse:img_new[i - padding_h, j - padding_w] = zmedreturn img_new# 自适中值滤波器处理椒盐噪声
kernel = np.ones([7,7])img_arithmentic_mean = median_filter(img, kernel=kernel)
img_adaptive_median = adaptive_median_denoise(img)plt.figure(figsize=(7,4))
plt.subplot(1,3,1)
plt.imshow(img, cmap = 'gray')
plt.title('original'), plt.xticks([]),plt.yticks([])
plt.subplot(1,3,2)
plt.imshow(img_arithmentic_mean, cmap = 'gray')
plt.title('median'), plt.xticks([]),plt.yticks([])
plt.subplot(1,3,3)
plt.imshow(img_adaptive_median, cmap = 'gray')
plt.title('adaptive'), plt.xticks([]),plt.yticks([])
plt.show()

结果展示

在这里插入图片描述

自适应中值滤波器 (Adaptive Median Filter)上面提到常规的中值滤波器,在噪声的密度不是很大的情况下(根据经验,噪声的出现的概率小于0.2),效果不错。但是当概率出现的概率较高时,常规的中值滤波的效果就不是很好了。有一个选择就是增大滤波器的窗口大小,这虽然在一定程度上能解决上述的问题,但是会给图像造成较大的模糊。

常规的中值滤波器的窗口尺寸是固定大小不变的,就不能同时兼顾去噪和保护图像的细节。这时就要寻求一种改变,根据预先设定好的条件,在滤波的过程中,动态的改变滤波器的窗口尺寸大小,这就是自适应中值滤波器 Adaptive Median Filter。在滤波的过程中,自适应中值滤波器会根据预先设定好的条件,改变滤波窗口的尺寸大小,同时还会根据一定的条件判断当前像素是不是噪声,如果是则用邻域中值替换掉当前像素;不是,则不作改变。
常规的中值滤波器的窗口尺寸是固定大小不变的,就不能同时兼顾去噪和保护图像的细节。这时就要寻求一种改变,根据预先设定好的条件,在滤波的过程中,动态的改变滤波器的窗口尺寸大小,这就是自适应中值滤波器 Adaptive Median Filter。在滤波的过程中,自适应中值滤波器会根据预先设定好的条件,改变滤波窗口的尺寸大小,同时还会根据一定的条件判断当前像素是不是噪声,如果是则用邻域中值替换掉当前像素;不是,则不作改变。

自适应中值滤波器有三个目的

滤除椒盐噪声
平滑其他非脉冲噪声
尽可能的保护图像中细节信息,避免图像边缘的细化或者粗化
噪声出现的概率较低,自适应中值滤波器可以较快的得出结果,不需要去增加窗口的尺寸;反之,噪声的出现的概率较高,则需要增大滤波器的窗口尺寸,这也符合种中值滤波器的特点:噪声点比较多时,需要更大的滤波器窗口尺寸。
中值滤波器能够很好的滤除“椒盐”噪声。椒盐噪声是在图像上随机出现的孤立点,根据中值滤波器的原理,使用邻域像素的中值代替原像素,能够有效的消除这些孤立的噪声点。

和均值滤波器的区别

和均值滤波器相比,中值滤波在消除噪声的同时,还能在很大程度保护图像的细节,不会造成很大的模糊。
和常规的中值滤波器相比,自适应中值滤波器能够更好的保护图像中的边缘细节部分。

相关文章:

自适应中值滤波器的python代码实现-----冈萨雷斯数字图像处理

基本原理&#xff1a; 自适应中值滤波器是一种图像处理技术&#xff0c;用于去除图像中的噪声。其原理是根据像素周围邻域内像素值的特性&#xff0c;动态地选择滤波器的大小和中值滤波的程度。 **邻域选择&#xff1a;**对于每个像素点&#xff0c;选取一个窗口或者邻域&…...

Python作业答疑_6.22~6.25

一、Python 一班 1. 基数分割列表 1.1 问题描述 给定一无序数列&#xff0c;把数列的第一个数字当成基数&#xff0c;让数列中基数小的数字排在数列前面&#xff0c;比基数大的数字排在数列的后面。 1.2 问题示例 如数列&#xff1a;num[4,1,8,3,9,2,10,7]。基数为 4&…...

Uber Go 语言编码规范

uber-go/guide 的中文翻译 English 文档链接 Uber Go 语言编码规范 Uber 是一家美国硅谷的科技公司&#xff0c;也是 Go 语言的早期 adopter。其开源了很多 golang 项目&#xff0c;诸如被 Gopher 圈熟知的 zap、jaeger 等。2018 年年末 Uber 将内部的 Go 风格规范 开源到 G…...

UniRepLKNet:用于音频、视频、点云、时间序列和图像识别的通用感知大内核ConvNet

摘要 https://arxiv.org/abs/2311.15599 大核卷积神经网络(ConvNets)最近受到了广泛的研究关注,但存在两个未解决的关键问题需要进一步研究。(1)现有大核ConvNets的架构在很大程度上遵循传统ConvNets或Transformers的设计原则,而大核ConvNets的架构设计仍未得到充分解决。(2…...

Http协议与Tomcat

HTTP协议 HTTP协议&#xff08;HyperText Transfer Protocol&#xff09;即超文本传输协议 &#xff0c;是TCP/IC网络体系结构应用层的一个客户端-服务端协议&#xff0c;是所有客户端&#xff0c;服务端数据传输的基石&#xff08;数据传输规则&#xff09; 特点 ⭐基于TCP协…...

Spring AOP从入门到精通

目录 1. AOP的演化过程 1. 代理模式 2. 动态代理 2.1 JDK动态代理 2.2 Cglib动态代理 3. Spring模式 3.1 ProxyFactory 3.2 ProxyFactoryBean 3.3 AbstractAutoProxyCreator 2. Spring AOP抽象 1. 核心术语 1.1 连接点(JoinPoint) 1.2 切点(Pointcut) 1.3 增强(Ad…...

Tap虚拟网卡

1 概述 Tap设备通常用于虚拟化场景下&#xff0c;其驱动代码位于drivers/net/tun.c&#xff0c;tap与tun复用大部分代码&#xff0c; 注&#xff1a;drivers/net/tap.c并不是tap设备的代码&#xff0c;而是macvtap和ipvtap&#xff1b; 下文中&#xff0c;我们统一称tap&#…...

【数电笔记】53-与非门构成的基本RS触发器

目录 说明&#xff1a; 1. 电路组成 2. 逻辑功能 3. 特性表 4. 特性方程 5. 状态转换图 6. 驱动表 7. 例题 例1 例2 说明&#xff1a; 笔记配套视频来源&#xff1a;B站&#xff1b;本系列笔记并未记录所有章节&#xff0c;只对个人认为重要章节做了笔记&#xff1b…...

kubernetes(k8s)容器内无法连接同所绑定的Service ClusterIP问题记录

kubernetes(k8s)容器内无法连接同所绑定的Service ClusterIP问题记录 1. k8s环境 k8s使用kubernetes-server-linux-amd64_1.19.10.tar.gz 二进制bin 的方式手动部署 k8s 版本: [rootmaster ~]# kubectl version Client Version: version.Info{Major:"1", Minor:&…...

Hadoop入门学习笔记

视频课程地址&#xff1a;https://www.bilibili.com/video/BV1WY4y197g7 课程资料链接&#xff1a;https://pan.baidu.com/s/15KpnWeKpvExpKmOC8xjmtQ?pwd5ay8 这里写目录标题 一、VMware准备Linux虚拟机1.1. VMware安装Linux虚拟机1.1.1. 修改虚拟机子网IP和网关1.1.2. 安装…...

堆栈,BSS,DATA,TEXT

一、目标文件 首先目标文件的构成&#xff0c;Linux下就是.o 文件 编译器编译源码后生成的文件叫目标文件&#xff08;Object File&#xff09;。 目标文件和可执行文件一般采用同一种格式&#xff0c;这种存储格式为 ELF。 目前文件的内容至少有编译后的机器指令代码和数据&a…...

Java八股文面试全套真题【含答案】-JSON篇

什么是JSON&#xff1f; 答案&#xff1a;JSON&#xff08;JavaScript Object Notation&#xff09;是一种轻量级的数据交换格式&#xff0c;基于JavaScript的对象字面量表示法&#xff0c;用于在不同语言和平台之间传输数据。JSON的数据结构是怎样的&#xff1f; 答案&#xf…...

数据库管理-第119期 记一次迁移和性能优化(202301130)

数据库管理-第119期 记一次迁移和性能优化&#xff08;202301130&#xff09; 1 迁移 之前因为DV组件没有迁移成功的那个PDB&#xff0c;后来想着在目标端安装DV组件迁移&#xff0c;结果目标端装不上&#xff0c;而且开了SR也没看出个所以然来。只能换一个方向&#xff0c;尝…...

【云原生-K8s】镜像漏洞安全扫描工具Trivy部署及使用

基础介绍基础描述Trivy特点 部署在线下载百度网盘下载安装 使用扫描nginx镜像扫描结果解析json格式输出 总结 基础介绍 基础描述 Trivy是一个开源的容器镜像漏洞扫描器&#xff0c;可以扫描常见的操作系统和应用程序依赖项的漏洞。它可以与Docker和Kubernetes集成&#xff0c;…...

【Docker】Swarm的ingress网络

Docker Swarm Ingress网络是Docker集群中的一种网络模式&#xff0c;它允许在Swarm集群中运行的服务通过一个公共的入口点进行访问。Ingress网络将外部流量路由到Swarm集群中的适当服务&#xff0c;并提供负载均衡和服务发现功能。 在Docker Swarm中&#xff0c;Ingress网络使…...

gcc安全特性之FORTIFY_SOURCE

GCC 4.0引入了FORTIFY_SOURCE特性&#xff0c;旨在加强程序的安全性&#xff0c;特别是对于字符串和内存操作函数的使用。下面是对FORTIFY_SOURCE机制的深入分析&#xff1a; 1. 功能 FORTIFY_SOURCE旨在检测和防止缓冲区溢出&#xff0c;格式化字符串漏洞以及其他与内存操作…...

【JUC】二十、volatile变量的特点与使用场景

文章目录 1、volatile可见性案例2、线程工作内存与主内存之间的原子操作3、volatile变量不具有原子性案例4、无原子性的原因分析&#xff1a;i5、volatile变量小总结6、重排序7、volatile变量禁重排的案例8、日常使用场景9、总结 volatile变量的特点&#xff1a; 可见性禁重排无…...

软件工程期末复习(2)

学习资料 设计模式与软件体系结构【期末全整理答案】_软件设计模式与体系结构期末考试题_鸽子不二的博客-CSDN博客 软件设计与体系结构(第二版)部分习题_软件设计与体系结构第二版课后答案-CSDN博客 软件体系结构试题库试题和答案 - 豆丁网Docin 软件设计与体系结构复习 - CN…...

[vue3] 使用 vite 创建vue3项目的详细流程

一、vite介绍 Vite&#xff08;法语意为 “快速的”&#xff0c;发音 /vit/&#xff0c;发音同 “veet”) 是一种新型前端构建工具&#xff0c;能够显著提升前端开发体验&#xff08;热更新、打包构建速度更快&#xff09;。 二、使用vite构建项目 【学习指南】学习新技能最…...

#HarmonyOS:软件安装window和mac预览Hello World

Window软件地址 https://developer.harmonyos.com/cn/develop/deveco-studio#download 安装的建议 这个界面这样选&#xff0c;其他界面全部按照默认路径往下走&#xff01;&#xff01;&#xff01; 等待安装… 安装环境错误处理 一般就是本地node配置异常导致&#xff…...

LBE-LEX系列工业语音播放器|预警播报器|喇叭蜂鸣器的上位机配置操作说明

LBE-LEX系列工业语音播放器|预警播报器|喇叭蜂鸣器专为工业环境精心打造&#xff0c;完美适配AGV和无人叉车。同时&#xff0c;集成以太网与语音合成技术&#xff0c;为各类高级系统&#xff08;如MES、调度系统、库位管理、立库等&#xff09;提供高效便捷的语音交互体验。 L…...

从WWDC看苹果产品发展的规律

WWDC 是苹果公司一年一度面向全球开发者的盛会&#xff0c;其主题演讲展现了苹果在产品设计、技术路线、用户体验和生态系统构建上的核心理念与演进脉络。我们借助 ChatGPT Deep Research 工具&#xff0c;对过去十年 WWDC 主题演讲内容进行了系统化分析&#xff0c;形成了这份…...

【入坑系列】TiDB 强制索引在不同库下不生效问题

文章目录 背景SQL 优化情况线上SQL运行情况分析怀疑1:执行计划绑定问题?尝试:SHOW WARNINGS 查看警告探索 TiDB 的 USE_INDEX 写法Hint 不生效问题排查解决参考背景 项目中使用 TiDB 数据库,并对 SQL 进行优化了,添加了强制索引。 UAT 环境已经生效,但 PROD 环境强制索…...

遍历 Map 类型集合的方法汇总

1 方法一 先用方法 keySet() 获取集合中的所有键。再通过 gey(key) 方法用对应键获取值 import java.util.HashMap; import java.util.Set;public class Test {public static void main(String[] args) {HashMap hashMap new HashMap();hashMap.put("语文",99);has…...

P3 QT项目----记事本(3.8)

3.8 记事本项目总结 项目源码 1.main.cpp #include "widget.h" #include <QApplication> int main(int argc, char *argv[]) {QApplication a(argc, argv);Widget w;w.show();return a.exec(); } 2.widget.cpp #include "widget.h" #include &q…...

TRS收益互换:跨境资本流动的金融创新工具与系统化解决方案

一、TRS收益互换的本质与业务逻辑 &#xff08;一&#xff09;概念解析 TRS&#xff08;Total Return Swap&#xff09;收益互换是一种金融衍生工具&#xff0c;指交易双方约定在未来一定期限内&#xff0c;基于特定资产或指数的表现进行现金流交换的协议。其核心特征包括&am…...

mysql已经安装,但是通过rpm -q 没有找mysql相关的已安装包

文章目录 现象&#xff1a;mysql已经安装&#xff0c;但是通过rpm -q 没有找mysql相关的已安装包遇到 rpm 命令找不到已经安装的 MySQL 包时&#xff0c;可能是因为以下几个原因&#xff1a;1.MySQL 不是通过 RPM 包安装的2.RPM 数据库损坏3.使用了不同的包名或路径4.使用其他包…...

Map相关知识

数据结构 二叉树 二叉树&#xff0c;顾名思义&#xff0c;每个节点最多有两个“叉”&#xff0c;也就是两个子节点&#xff0c;分别是左子 节点和右子节点。不过&#xff0c;二叉树并不要求每个节点都有两个子节点&#xff0c;有的节点只 有左子节点&#xff0c;有的节点只有…...

2.3 物理层设备

在这个视频中&#xff0c;我们要学习工作在物理层的两种网络设备&#xff0c;分别是中继器和集线器。首先来看中继器。在计算机网络中两个节点之间&#xff0c;需要通过物理传输媒体或者说物理传输介质进行连接。像同轴电缆、双绞线就是典型的传输介质&#xff0c;假设A节点要给…...

ZYNQ学习记录FPGA(二)Verilog语言

一、Verilog简介 1.1 HDL&#xff08;Hardware Description language&#xff09; 在解释HDL之前&#xff0c;先来了解一下数字系统设计的流程&#xff1a;逻辑设计 -> 电路实现 -> 系统验证。 逻辑设计又称前端&#xff0c;在这个过程中就需要用到HDL&#xff0c;正文…...