Django + Matplotlib:实现数据分析显示与下载为PDF或SVG

写作背景
首先,数据分析在当前的信息时代中扮演着重要的角色。随着数据量的增加和复杂性的提高,人们对于数据分析的需求也越来越高。
其次,笔者也确确实实曾经接到过一个这样的开发需求,甲方是一个医疗方面的科研团队,有相当大的一些关于癌症治疗方面的医疗数据,通过这些数据可以分析出很多东西,最重要的是将数据通过一些科学计算后转换为可视化的数据图,并且要根据用户的检索数据实时分析展示,并且可保存为pdf或svg格式的源文件,可提供后期印刷一类的二次修改使用;最终就选择了Django和Matplotlib这两个强大的库来实现数据分析的显示和下载功能。
本文将只会浅显的探讨如何使用Django和Matplotlib,并不会对数据分析方面的知识做过多的介绍!
环境搭建
这里我假设你已经会使用django,并且已经使用django搭建起了一个可运行的demo app。
Matplotlib的安装使用和其他的Python第三方包一致,只需要通过pip命令即可快速安装!
pip install matplotlib
代码示例
1、假如我们拥有一个如下代码所示的django 类视图
# demo/views.pyfrom django.shortcuts import render
from django.views.generic import Viewclass HomeView(View):"""HomeView类是一个继承自View的视图类,用于处理与主页相关的请求。Attributes:template_name (str): 展示主页所使用的模板名称。"""template_name = "demo/home.html"def get(self, request, *args, **kwargs):return render(request, self.template_name)
2、url如下所示
# 项目mysite的根urls.pyfrom django.urls import path
from. import viewsurlpatterns = [path('', views.HomeView.as_view(), name='index'),
]
3、demo/templates/demo目录下home.html代码如下
<!DOCTYPE html>
<html lang="en">
<head><meta charset="UTF-8"><meta name="viewport" content="width=device-width, initial-scale=1.0"><title>Document</title>
</head>
<body></body>
</html>
这只是一个空白的html页面,最后用来显示分析图!
那么,根据以上代码,我们可以通过django的runserver命令运行项目后看到该页面!
Matplotlib使用
1、在demo/views.py当中引入如下包
import base64
from io import BytesIO
from matplotlib.figure import Figurefrom django.http import FileResponse
代码解释:
import base64 是我们导入了Python的base64模块,该模块提供了对 Base64 编码格式的支持。Base64 是一种用于编码二进制数据的方式,它将每3个字节的数据编码为4个字符,因此会将数据的大小增加约33%。这种编码格式常用于在文本中进行二进制数据的表示,尤其是在需要将二进制数据通过电子邮件等文本通道进行传输的情况下。通过导入 base64 模块,我们可以使用该模块提供的函数和类来进行 Base64 编码和解码操作。
from io import BytesIO 这一行代码是在 Python 中导入 BytesIO 类。BytesIO 类是 Python 标准库 io 模块中的一个类,用于在内存中处理二进制数据流。
BytesIO 类实现了一个缓冲区,这个缓冲区可以像文件一样进行读写操作,但实际上是在内存中进行的。因此,它可以在内存中处理和操作二进制数据,而不需要将数据写入磁盘。
通过使用 BytesIO 类,我们可以将二进制数据存储在内存中,并像处理文件一样对其进行读取、写入和其他操作。这对于处理大量数据或在内存中执行文件操作更加高效和灵活。
from matplotlib.figure import Figure 是导入matplotlib 库中的 Figure 类,Figure 类是 matplotlib 库中的一个核心类,用于创建一个图形窗口(figure window)。这个窗口可以包含各种图形元素,如坐标轴(axes)、曲线(lines)、文本(text)等。
通过导入 Figure 类,我们可以创建一个空的图形窗口,并在其中添加各种图形元素。这对于自定义图形的外观和布局非常有用。
from django.http import FileResponse是导入django为我们提供的一个响应对象,关于其作用django的官网对其有详细说明,如下所示:

2、实现在页面中显示分析图的需求
首先,我们在HomeView类中新增一个get_fig的方法,让其生成一个分析图对象:
class HomeView(View):...def get_fig(self):"""获取一个图形和轴对象返回:fig (matplotlib.figure.Figure): 图形对象ax (matplotlib.axes.Axes): 轴对象"""fig = Figure(figsize=(5, 5)) # 创建一个大小为 5x5 的图形对象ax = fig.subplots() # 在图形对象上创建一个子图对象ax.plot([1, 2, 3, 4]) # 在轴对象上绘制一条线# 标题fig.suptitle("Hello world") # 设置图形的标题# 坐标轴ax.set_ylabel("Y zhou", fontdict={"size": 16, "color": "red", "weight": "bold", "family": "serif"}) # 设置轴对象的 y 轴标签ax.set_xlabel("X zhou") # 设置轴对象的 x 轴标签return fig, ax # 返回图形对象和轴对象
有了该图形对象之后,我们就可以用base64包将该图形对象在内存中转换为png格式的字节流,为此我们再在该视图类下新增一个img_base64_to_file的方法,让它接收一个图形对象fig作为参数!
class HomeView(View):...def img_base64_to_file(self, fig):"""将图像保存为base64编码的文件参数:fig:要保存的图像对象返回值:img:包含base64编码图像的HTML标签"""buf = BytesIO() # 创建字节流用于保存图像fig.savefig(buf, format="png") # 将图像保存为png格式的字节流data = base64.b64encode(buf.getbuffer()).decode("ascii") # 将字节流转换为base64编码的字符串img = f"<img src='data:image/png;base64,{data}'/>" # 构建包含base64编码图像的HTML标签return img # 返回HTML标签
做完以上两步之后,其实只需要将img_base64_to_file方法的返回值传递到get请求的上下文当中,在django的模版中通过模版过滤器safe渲染即可!其他动态筛选逻辑以及其他操作即可通过django的相关功能去实现!代码如下:
class HomeView(View):...def get(self, request, *args, **kwargs):fig, ax = self.get_fig()img = self.img_base64_to_file(fig) return render(request, self.template_name, {"img": img})
静态html模版中如下
<!DOCTYPE html>
<html lang="en">
<head><meta charset="UTF-8"><meta name="viewport" content="width=device-width, initial-scale=1.0"><title>Document</title>
</head>
<body>{{ img|safe }}
</body>
</html>

最终渲染图
3、实现将分析图保存为pdf或svg格式
要实现该需求其实也非常简单,只需要在该视图类中新增一个post的请求,使用django的FileResponse将数据流保存到本地即可,其中需要关注的只是fig图形对象中的savefig方法的format参数的变化,也就是保存文件的格式,这个函数本身就是支持导出pdf和svg格式的!代码如下:
class HomeView(View):...def download_response(self, fig, filename:str):"""将给定的图形对象 fig 保存为 pdf 格式的文件并下载。参数:self (object): 类实例对象fig (matplotlib.figure.Figure): 绘制好的图形对象filename (str): 保存的文件名,包含扩展名返回值:FileResponse: 用于文件下载的响应对象"""buf = BytesIO()fig.savefig(buf, format="pdf")buf.seek(0)return FileResponse(buf, as_attachment=True, filename=f"{filename}.pdf")def post(self, request, *args, **kwargs):fig,ax = self.get_fig()return self.download_response(fig, "demo")
在html模版中通过post的表单请求即可下载,代码如下:
<body>{{ img|safe }}<form action="" method="post">{% csrf_token %}submit: <input type="submit" value="下载"></form>
</body>

最终,通过点击下载按钮,发起一个post请求就实现了下载到本地的功能,当然你想动态控制下载格式的话,还可以通过django的表单系统开放给用户,让用户自由选择所需要的下载格式,需要注意的是format参数要和文件后缀格式保持一致!

作者开源商城项目,欢迎大家fork学习,同步开发教程持续更新
开源地址:https://gitee.com/xingfugz/bayke-shop
相关文章:
Django + Matplotlib:实现数据分析显示与下载为PDF或SVG
写作背景 首先,数据分析在当前的信息时代中扮演着重要的角色。随着数据量的增加和复杂性的提高,人们对于数据分析的需求也越来越高。 其次,笔者也确确实实曾经接到过一个这样的开发需求,甲方是一个医疗方面的科研团队࿰…...
【Rust】第一节:安装
1 说明 一些学习记录 环境:MacOS 2 步骤 1、执行curl --proto https --tlsv1.2 https://sh.rustup.rs -sSf | sh 2、看到打印 info: downloading installerWelcome to Rust!... ...This path will then be added to your PATH environment variable by modifyin…...
12-07 周四 Pytorch 使用Visdom 进行可视化
简介 在完成了龙良曲的Pytroch视频课程之后,楼主对于pytroch有了进一步的理解,比如,比之前更加深刻的了解了BP神经网络的反向传播算法,梯度、损失、优化器这些名词更加熟悉。这个博客简要介绍一下在使用Pytorch进行数据可视化的一…...
基于微信小程序的智慧校园导航系统研究
点我下载完整版 基于微信小程序的智慧校园导航系统研究 Research on Smart Campus Navigation System based on WeChat mini program 目录 目录 2 摘要 3 关键词 4 第一章 研究背景与意义 4 1.1 校园导航系统研究的背景 4 1.2 微信小程序在校园导航系统中的应用 5 1.3 研究的目…...
VUE3给table的head添加popover筛选、时间去除时分秒、字符串替换某字符
1. VUE3给table的head添加popover筛选 <el-tableref"processTableRef"class"process-table"row-key"secuId":data"pagingData"style"width: 100%"highlight-current-row:height"stockListHeight":default-exp…...
19、XSS——HTTP协议安全
文章目录 一、Weak Session IDs(弱会话IDs)二、HTTP协议存在的安全问题三、HTTPS协议3.1 HTTP和HTTPS的区别3.2 SSL协议组成 一、Weak Session IDs(弱会话IDs) 当用户登录后,在服务器就会创建一个会话(Session),叫做会话控制&…...
深圳锐杰金融:用金融力量守护社区健康
深圳市锐杰金融投资有限公司,作为中国经济特区的中流砥柱,近年来以其杰出的金融成绩和坚定的社会责任立场引人注目。然而,这并非一个寻常的金融机构。锐杰金融正在用自己的方式诠释企业责任和慈善精神,通过一系列独特的慈善项目&a…...
python对py文件加密
参考文献: 【编程技巧】py文件批量编译,py批量转pyd,PyCharm设置py转pyd功能_py文件编译pyd-CSDN博客 【Python小技巧】加密又提速,把.py文件编译为.pyd文件(类似dll函数库),你值得拥有&#x…...
Thymeleaf生成pdf表格合并单元格描边不显示
生成pdf后左侧第一列的右描边不显示,但是html显示正常 显示异常时描边的写法 cellpadding“0” cellspacing“0” ,td,th描边 .self-table{border:1px solid #000;border-collapse: collapse;width:100%}.self-table th{font-size:12px;border:1px sol…...
C# Solidworks二次开发:三种获取SW设计结构树的方法-第二讲
今天这篇文章是接上一篇文章的,主要讲述的是获取SW设计结构树节点的第二种方法。 这个方法获取节点的逻辑是先获取最顶层节点,然后再通过获取顶层节点的子节点一层一层的把所有节点都找出来,也就是需要递归。想要用这个方法就要了解下面几个…...
分布式搜索引擎03
1.数据聚合 聚合(aggregations)可以让我们极其方便的实现对数据的统计、分析、运算。例如: 什么品牌的手机最受欢迎? 这些手机的平均价格、最高价格、最低价格? 这些手机每月的销售情况如何? 实现这些统计功能的比数据库的sql要方便的多,而且查询速度非常快,可以实现近…...
flex布局的flex为1到底是什么
参考博客:flex:1什么意思_公孙元二的博客-CSDN博客 flex:1即为flex-grow:1,经常用作自适应布局,将父容器的display:flex,侧边栏大小固定后,将内容区flex:1,内…...
class050 双指针技巧与相关题目【算法】
class050 双指针技巧与相关题目【算法】 算法讲解050【必备】双指针技巧与相关题目 code1 922. 按奇偶排序数组 II // 按奇偶排序数组II // 给定一个非负整数数组 nums。nums 中一半整数是奇数 ,一半整数是偶数 // 对数组进行排序,以便当 nums[i] 为…...
计算机操作系统4
1.什么是进程同步 2.什么是进程互斥 3.进程互斥的实现方法(软件) 4.进程互斥的实现方法(硬件) 5.遵循原则 6.总结: 线程是一个基本的cpu执行单元,也是程序执行流的最小单位。 调度算法:先来先服务FCFS、短作业优先、高响应比优先、时间片…...
【ASP.NET CORE】EntityFrameworkCore 数据迁移
如果数据库中已经有数据结构,可以使用Scaffold-DbContext来同步model,-connection是字符串,-outputdir 是输入文件夹名称,举例的脚本使用的是sqlserver数据库 通用 Scaffold-DbContext -Connection "DatabaseAddress;Data …...
说说React jsx转换成真实DOM的过程?
在React中,JSX(JavaScript XML)是一种语法糖,用于描述用户界面的结构和组件关系。当你编写React组件并包含JS JSX解析:React中的JSX代码首先会被解析成JavaScript对象。这个过程通常是通过Babel等工具进行的࿰…...
MongoDB知识总结
这里写自定义目录标题 MongoDB基本介绍MongoDB基本操作数据库相关集合相关增删改查 MongoDB基本介绍 简单介绍 MongoDB是一个基于分布式文件存储的数据库。由C语言编写。旨在为WEB应用提供可扩展的高性能数据存储解决方案。 MongoDB是一个介于关系数据库和非关系数据库之间的产…...
【LeeCode】1.两数之和
给定一个整数数组 nums 和一个整数目标值 target,请你在该数组中找出 和为目标值 target 的那 两个 整数,并返回它们的数组下标。 你可以假设每种输入只会对应一个答案。但是,数组中同一个元素在答案里不能重复出现。 你可以按任意顺序返回…...
Python 作业答疑_6.15~6.18
一、Python 一班 1. 比较字符串 1.1 问题描述 比较两个字符串A和B,字符串A和B中的字符都是大写字母,确定A中是否包含B中所有的字符。 1.2 问题示例 例如,给出A"ABCD",B"ACD",返回True&#x…...
Diffusion 公式推导
Diffusion:通过扩散和逆扩散过程生成图像的生成式模型 中已经对 diffusion 的原理进行了直观地梳理,本文对其中的数学推导进行讲解,还是基于 DDPM。 目录 一. 预备知识1. 重参数技巧2. 高斯分布的可加性3. 扩散递推式的由来 二. 扩散过程1. 背…...
从零实现富文本编辑器#5-编辑器选区模型的状态结构表达
先前我们总结了浏览器选区模型的交互策略,并且实现了基本的选区操作,还调研了自绘选区的实现。那么相对的,我们还需要设计编辑器的选区表达,也可以称为模型选区。编辑器中应用变更时的操作范围,就是以模型选区为基准来…...
centos 7 部署awstats 网站访问检测
一、基础环境准备(两种安装方式都要做) bash # 安装必要依赖 yum install -y httpd perl mod_perl perl-Time-HiRes perl-DateTime systemctl enable httpd # 设置 Apache 开机自启 systemctl start httpd # 启动 Apache二、安装 AWStats࿰…...
GC1808高性能24位立体声音频ADC芯片解析
1. 芯片概述 GC1808是一款24位立体声音频模数转换器(ADC),支持8kHz~96kHz采样率,集成Δ-Σ调制器、数字抗混叠滤波器和高通滤波器,适用于高保真音频采集场景。 2. 核心特性 高精度:24位分辨率,…...
LeetCode - 199. 二叉树的右视图
题目 199. 二叉树的右视图 - 力扣(LeetCode) 思路 右视图是指从树的右侧看,对于每一层,只能看到该层最右边的节点。实现思路是: 使用深度优先搜索(DFS)按照"根-右-左"的顺序遍历树记录每个节点的深度对于…...
scikit-learn机器学习
# 同时添加如下代码, 这样每次环境(kernel)启动的时候只要运行下方代码即可: # Also add the following code, # so that every time the environment (kernel) starts, # just run the following code: import sys sys.path.append(/home/aistudio/external-libraries)机…...
HybridVLA——让单一LLM同时具备扩散和自回归动作预测能力:训练时既扩散也回归,但推理时则扩散
前言 如上一篇文章《dexcap升级版之DexWild》中的前言部分所说,在叠衣服的过程中,我会带着团队对比各种模型、方法、策略,毕竟针对各个场景始终寻找更优的解决方案,是我个人和我司「七月在线」的职责之一 且个人认为,…...
Python训练营-Day26-函数专题1:函数定义与参数
题目1:计算圆的面积 任务: 编写一个名为 calculate_circle_area 的函数,该函数接收圆的半径 radius 作为参数,并返回圆的面积。圆的面积 π * radius (可以使用 math.pi 作为 π 的值)要求:函数接收一个位置参数 radi…...
Android写一个捕获全局异常的工具类
项目开发和实际运行过程中难免会遇到异常发生,系统提供了一个可以捕获全局异常的工具Uncaughtexceptionhandler,它是Thread的子类(就是package java.lang;里线程的Thread)。本文将利用它将设备信息、报错信息以及错误的发生时间都…...
智能职业发展系统:AI驱动的职业规划平台技术解析
智能职业发展系统:AI驱动的职业规划平台技术解析 引言:数字时代的职业革命 在当今瞬息万变的就业市场中,传统的职业规划方法已无法满足个人和企业的需求。据统计,全球每年有超过2亿人面临职业转型困境,而企业也因此遭…...
二维FDTD算法仿真
二维FDTD算法仿真,并带完全匹配层,输入波形为高斯波、平面波 FDTD_二维/FDTD.zip , 6075 FDTD_二维/FDTD_31.m , 1029 FDTD_二维/FDTD_32.m , 2806 FDTD_二维/FDTD_33.m , 3782 FDTD_二维/FDTD_34.m , 4182 FDTD_二维/FDTD_35.m , 4793...
