工作中责任链模式用法及其使用场景?
前言
笔者是金融保险行业,有这么一种场景,业务员录完单后提交核保,这时候系统会对保单数据进行校验,如不允许手续费超限校验,客户真实性校验、费率限额校验等等,当校验一多时,维护起来特别麻烦,代码耦合度太高。
这里使用责任链模式,将每个校验模块之间互相独立,在后面新增校验时,只需要往容器中插入即可,且可以给每个模块赋予优选级进行排序,利于管理。与Spring框架结合,利于类的管理。
正文

处理器模板
public interface CheckProcessor {/*** 逻辑处理* @param policyInfo* @param exposeProcessor*/public void invoke(PolicyInfo policyInfo,ExposeProcessor exposeProcessor) throws Exception;
}
处理器实现类
手续费校验器
public class CommissionRateCheckProcessor implements CheckProcessor {@Overridepublic void invoke(PolicyInfo policyInfo, ExposeProcessor exposeProcessor) throws Exception {System.out.println("完成手续费校验");//调用下个处理器exposeProcessor.invoke(policyInfo);}
}
客户真实性校验器
public class CustomerCheckProcessor implements CheckProcessor {@Overridepublic void invoke(PolicyInfo policyInfo, ExposeProcessor exposeProcessor) throws Exception {System.out.println("完成客户真实性校验");//调用下个处理器exposeProcessor.invoke(policyInfo);}
}
保险费率校验器
public class PremiumRateCheckProcessor implements CheckProcessor {@Overridepublic void invoke(PolicyInfo policyInfo, ExposeProcessor exposeProcessor) throws Exception {System.out.println("完成保险费率校验");//调用下个处理器exposeProcessor.invoke(policyInfo);}
}
入口管理类
public class ExposeProcessor {private int index;private static List<CheckProcessor> processor=new ArrayList();static {setProcessor(new CustomerCheckProcessor());setProcessor(new CommissionRateCheckProcessor());setProcessor(new PremiumRateCheckProcessor());}/*** 处理器*/public void invoke(PolicyInfo policyInfo) throws Exception {//获取容器中所有的处理器List processors = getProcessors();if (processors.size()==0||index==processors.size()){return;}//根据指针指向,调用处理器。并把指针指向下一个CheckProcessor processor = (CheckProcessor)processors.get(index++);//调用处理器processor.invoke(policyInfo,this);}/*** 处理器集*/private List getProcessors(){return processor;}public static void setProcessor(CheckProcessor checkProcessor){processor.add(checkProcessor);}}
- 获取容器中的校验器
- 校验是否往下执行,如果处理器数量为空,或者当前指针已经指向尾部时,则不再往下执行
- 将管理器以及请求参数传递到处理器中进行处理
- 处理器执行完毕后,调用管理器的invoke方法来启动责任链中的下个处理器
测试用例
public static void main(String[] args) {ExposeProcessor exposeProcessor=new ExposeProcessor();try {exposeProcessor.invoke(new PolicyInfo());} catch (Exception e) {e.printStackTrace();}}

以前代码有很多可以改进的地方,如与IOC框架结合,将每个处理器交给IOC容器进行管理,在获取处理器方法中可以直接从IOC容器中获取CheckProcessor 类型的所有实现类。
结合Spring IOC
@Service
public class ExposeProcessor implements ApplicationContextAware {private ApplicationContext applicationContext;private int index;private List<CheckProcessor> processor=new ArrayList();/*** 处理器*/public void invoke(PolicyInfo policyInfo) throws Exception {List processors = getProcessors();if (processors.size()==0||index==processors.size()){return;}CheckProcessor processor = (CheckProcessor)processors.get(index++);processor.invoke(policyInfo,this);}/*** 处理器集*/private List getProcessors(){Map<String, CheckProcessor> beansOfType = this.applicationContext.getBeansOfType(CheckProcessor.class);return beansOfType.values().stream().collect(Collectors.toList());}public void setProcessor(CheckProcessor checkProcessor){processor.add(checkProcessor);}@Overridepublic void setApplicationContext(ApplicationContext applicationContext) throws BeansException {this.applicationContext=applicationContext;}
}
- 管理类实现ApplicationContextAware接口,并重写其setApplicationContext方法,将IOC上下文对象保存下来。
- 从IOC容器中获取类型为CheckProcessor 的类
- 将管理类加上@Service注解交由IOC容器进行管理
- 在所有的校验器实现类上都加上@Service注解,交由IOC容器管理
测试:
public static void main(String[] args) {//创建Spring IOC容器,开启注解扫码AnnotationConfigApplicationContext annotationConfigApplicationContext=new AnnotationConfigApplicationContext("com.mashibing.dp.intepreter");//获取管理类ExposeProcessor exposeProcessor= (ExposeProcessor) annotationConfigApplicationContext.getBean("exposeProcessor");try {exposeProcessor.invoke(new PolicyInfo());} catch (Exception e) {e.printStackTrace();}}
由于项目非Spring web项目,所以必须启动Spring IOC容器,指定包路径对注解进行扫码,这样才能将类交由容器进行管理,不然获取会为空。

总结
责任链模式有多种写法,具体需要根据业务场景进行定制化开发。
责任链模式的优点:
- 降低耦合度。它将请求的发送者和接收者解耦
- 简化了对象。使得对象不需要知道链的结构。
- 增强给对象指派职责的灵活性。通过改变链内的成员或者调动它们的次序,允许动态地新增或者删除责任。
- 增加新的请求处理类很方便。
责任链模式的缺点:
- 不能保证请求一定被接收。
- 系统性能将受到一定影响,而且在进行代码调试时不太方便,可能会造成循环调用。
- 可能不容易观察运行时的特征,有碍于除错。
相关文章:
工作中责任链模式用法及其使用场景?
前言 笔者是金融保险行业,有这么一种场景,业务员录完单后提交核保,这时候系统会对保单数据进行校验,如不允许手续费超限校验,客户真实性校验、费率限额校验等等,当校验一多时,维护起来特别麻烦…...
三八女神节有哪些数码好物?2023年三八女神节数码好物清单
2023年的三八女神节就快到了,大家还在烦恼,不知道有哪些数码好物?在此,我来给大家分享几款三八女神节实用性强的数码好物,一起来看看吧。 一、蓝牙耳机:南卡小音舱 参考价:239 推荐理由&…...
FairGuard-Windows加固工具版本更新日志
FairGuard-Windows加固工具1.2.2版本更新日志: ■ 增加Unity Resources资源加密的支持; ■ 增加单独Assetbundle资源加密,并同时支持压缩包和文件夹作为输入的方式; ■ 增加对游戏原文件夹加固的支持; Windows加固方案介绍 FairGuard专为游戏量身定…...
基于RT-Thread完整版搭建的极简Bootloader
项目背景Agile Upgrade: 用于快速构建 bootloader 的中间件。example 文件夹提供 PC 上的示例特性适配 RT-Thread 官方固件打包工具 (图形化工具及命令行工具)使用纯 C 开发,不涉及任何硬件接口,可在任何形式的硬件上直接使用加密、压缩支持如下…...
3.flinkDateStreamAPI介绍env与source
执行环境 Flink可以在不同的环境上下文中运行.可以本地集成开发环境中运行也可以提交到远程集群环境运行. 不同的运行环境对应的flink的运行过程不同,需要首先获取flink的运行环境,才能将具体的job调度到不同的TaskManager 在flink中可以通过StreamExecutionEnvironment类获取…...
$ 2 :数据类型
1.数据类型 1.1基本类型 a、整型int b、浮点型float c、字符型char 1.2构造类型 a、数组[ ] b、结构体struct 1.3指针类型 * 1.4空类型(void) 2.关键字 autoconstdoublefloatintshortstructunsignedbreakcontinueelseforlongsignedswitchvoidcasedefaultenumgotoregistersiz…...
类和对象 - 上
本文已收录至《C语言》专栏! 作者:ARMCSKGT 目录 前言 正文 面向过程与面向对象 面向过程的解决方法 面向对象的解决方法 面向对象的优势 类的引入 早期C类的实现 class定义类 class定义规则 类成员的两种定义方式 类的访问限定符及封装 访…...
补档:红黑树代码实现+简略讲解
红黑树讲解和实现1 红黑树介绍1.1 红黑树特性1.2 红黑树的插入1.3 红黑树的删除2 完整代码实现2.1 rtbtree.h头文件2.2 main.c源文件1 红黑树介绍 红黑树( Red-Black tree,简称RB树)是一种自平衡二叉查找树,是计算机科学中常见的一种数据结构,…...
FirePower X2 14.0.1 for RAD Studio Alexandria
介绍 FirePower X2 FirePower X2 集成了 RAD Studio 11.0 Alexandria 中的新功能,并预览了我们的新特色组件 TwwDataGrouper。 FirePower X2 还允许您为 Apple 的新 M1 芯片构建应用程序,这样您就可以进一步利用 M1 芯片来提高本机应用程序的性能&#x…...
二十九、MongoDB 恢复数据( mongorestore )
MongoDB mongorestore 脚本命令可以用来恢复备份的数据 语法 MongoDB mongorestore 命令脚本语法如下 $ mongorestore -h <hostname><:port> -d dbname <path> 参数说明 -h <:port>, -h<:port> MongoDB 所在服务器地址,默认为 l…...
【数据分析】缺失数据如何处理?pandas
本文目录1. 基础概念1.1. 缺失值分类1.2. 缺失值处理方法2. 缺失观测及其类型2.1. 了解缺失信息2.2. 三种缺失符号2.3. Nullable类型与NA符号2.4. NA的特性2.5. convert_dtypes方法3. 缺失数据的运算与分组 3.1. 加号与乘号规则3.2. groupby方法中的缺失值4. 填充与剔除4.1. fi…...
嵌入式开发--STM32H750VBT6开发中,新版本CubeMX的时钟问题,不能设置到最高速度480MHZ
嵌入式开发–STM32H750VBT6开发中,新版本CubeMX的时钟问题,不能设置到最高速度480MHZ 问题描述 之前开发的项目,开发环境是CubeMX6.6.1,H7系列的支持包版本是1.10.0。跑得没问题,最近需要对项目做修改,同…...
一文读懂PaddleSpeech中英混合语音识别技术
语音识别技术能够让计算机理解人类的语音,从而支持多种语音交互的场景,如手机应用、人车协同、机器人对话、语音转写等。然而,在这些场景中,语音识别的输入并不总是单一的语言,有时会出现多语言混合的情况。例如&#…...
问题三十四:傅立叶变换——高通滤波
高通滤波器是一种可以通过去除图像低频信息来增强高频信息的滤波器。在图像处理中,高通滤波器常常用于去除模糊或平滑效果,以及增强边缘或细节。在本篇回答中,我们将使用Python和OpenCV实现高通滤波器。 Step 1:加载图像并进行傅…...
flink 键控状态(keyed state)
github开源项目flink-note的笔记。本博客的实现代码都写在项目的flink-state/src/main/java/state/keyed/KeyedStateDemo.java文件中。 项目github地址: github 1. flink键控状态 flink键控状态是作用与flink KeyedStream上的,也就是说需要将DataStream先进行keyby之后才能使…...
【ChatGPT】sqlachmey 多表连表查询语句
感受下科技带来的魅力,这篇文章是通过ChatGPT自动生成的,不得不说技术强大!!! 在SQLAlchemy中进行多表连接查询可以使用join()方法或join()函数,具体用法如下: join()方法 join()方法可以在SQLAlchemy ORM中的查询中使用。假设…...
win11 系统登录问题,PIN 设置问题
我的电脑配置是华为MateBook X Pro 12,i7处理器,16G,1T,win11 系统通过微软账户登录,下午一直登录不进去,网络能连外网,分析应该是连微软服务器不行。连续登录几十次,偶尔可能有一次…...
数据结构六大排序
1.插入排序 思路: 从第一个元素开始认为是有序的,去一个元素tem从有序序列从后往前扫描,如果该元素大于tem,将该元素一刀下一位,循环步骤3知道找到有序序列中小于等于的元素将tem插入到该元素后,如果已排序…...
快速生成QR码的方法:教你变成QR Code Master
目录 简介: 具体实现步骤: 一、可以使用Python中的qrcode和tkinter模块来生成QR码。以下是一个简单的例子,演示如何在Tkinter窗口中获取用户输入并使用qrcode生成QR码。 1)首先需要安装qrcode模块,可以使用以下命令在终端或命令…...
tensorflow1.14.0安装教程--保姆级
//方法不止一种,下面仅展示一种。 注:本人电脑为win11,anaconda的python版本为3.9,但tensorflow需要python版本为3.7,所以下面主要阐述将python版本改为3.7后的安装过程以及常遇到的问题。 1.首先电脑安装好anaconda…...
SciencePlots——绘制论文中的图片
文章目录 安装一、风格二、1 资源 安装 # 安装最新版 pip install githttps://github.com/garrettj403/SciencePlots.git# 安装稳定版 pip install SciencePlots一、风格 简单好用的深度学习论文绘图专用工具包–Science Plot 二、 1 资源 论文绘图神器来了:一行…...
大型活动交通拥堵治理的视觉算法应用
大型活动下智慧交通的视觉分析应用 一、背景与挑战 大型活动(如演唱会、马拉松赛事、高考中考等)期间,城市交通面临瞬时人流车流激增、传统摄像头模糊、交通拥堵识别滞后等问题。以演唱会为例,暖城商圈曾因观众集中离场导致周边…...
深入浅出:JavaScript 中的 `window.crypto.getRandomValues()` 方法
深入浅出:JavaScript 中的 window.crypto.getRandomValues() 方法 在现代 Web 开发中,随机数的生成看似简单,却隐藏着许多玄机。无论是生成密码、加密密钥,还是创建安全令牌,随机数的质量直接关系到系统的安全性。Jav…...
【位运算】消失的两个数字(hard)
消失的两个数字(hard) 题⽬描述:解法(位运算):Java 算法代码:更简便代码 题⽬链接:⾯试题 17.19. 消失的两个数字 题⽬描述: 给定⼀个数组,包含从 1 到 N 所有…...
FastAPI 教程:从入门到实践
FastAPI 是一个现代、快速(高性能)的 Web 框架,用于构建 API,支持 Python 3.6。它基于标准 Python 类型提示,易于学习且功能强大。以下是一个完整的 FastAPI 入门教程,涵盖从环境搭建到创建并运行一个简单的…...
django filter 统计数量 按属性去重
在Django中,如果你想要根据某个属性对查询集进行去重并统计数量,你可以使用values()方法配合annotate()方法来实现。这里有两种常见的方法来完成这个需求: 方法1:使用annotate()和Count 假设你有一个模型Item,并且你想…...
MySQL 8.0 OCP 英文题库解析(十三)
Oracle 为庆祝 MySQL 30 周年,截止到 2025.07.31 之前。所有人均可以免费考取原价245美元的MySQL OCP 认证。 从今天开始,将英文题库免费公布出来,并进行解析,帮助大家在一个月之内轻松通过OCP认证。 本期公布试题111~120 试题1…...
【RockeMQ】第2节|RocketMQ快速实战以及核⼼概念详解(二)
升级Dledger高可用集群 一、主从架构的不足与Dledger的定位 主从架构缺陷 数据备份依赖Slave节点,但无自动故障转移能力,Master宕机后需人工切换,期间消息可能无法读取。Slave仅存储数据,无法主动升级为Master响应请求ÿ…...
AI编程--插件对比分析:CodeRider、GitHub Copilot及其他
AI编程插件对比分析:CodeRider、GitHub Copilot及其他 随着人工智能技术的快速发展,AI编程插件已成为提升开发者生产力的重要工具。CodeRider和GitHub Copilot作为市场上的领先者,分别以其独特的特性和生态系统吸引了大量开发者。本文将从功…...
Unit 1 深度强化学习简介
Deep RL Course ——Unit 1 Introduction 从理论和实践层面深入学习深度强化学习。学会使用知名的深度强化学习库,例如 Stable Baselines3、RL Baselines3 Zoo、Sample Factory 和 CleanRL。在独特的环境中训练智能体,比如 SnowballFight、Huggy the Do…...
