Flink入门之核心概念(三)
任务槽
-
TaskSlots: 任务槽,是TaskManager提供的用于执行Task的资源(CPU + 内存)
-
TaskManager提供的TaskSlots的个数:主要由Taskmanager所在机器的CPU核心数来决定,不能超过CPU的最大核心数
- 1.可以在flink/conf/flink-conf.yaml文件中的numberOfTaskSlot配置
- 2.在yarn集群中运行flink时,任务槽的个数受到yarn中container的最大CPU数 vcores
-
一个作业的Task数量如何确定?
- 1.主要由算子数、算子链数、并行度共同来决定的
- 2.如果禁用算子链合并,task的数量 = 算子数 * 并行度(并行度相同)
- 3.如果存在算子链合并,task的数量 = 合并后的算子链数(包含不合并的算子)* 并行度(并行度相同)
-
Slot共享:flink允许将上下游的task共享给同一个slot。但是注意,同一个Task的并行子任务不允许共享
-
为什么要Slot共享?
- 1.当我们将资源密集型和非密集型的任务同时放到一个slot中,他们就可以自行分配对资源占用的比例,保证最重的活平均分配给所有的Taskmanager
- 2.Slot共享另一个好处就是在一个Slot中可以保存完整的作业管道
-
能不能不共享?
- 通过设置共享组(算子.slotSharingGroup(“共享组名”))来实现共享或者不共享,默认的共享组为default,从source端往后传递,如果下游的算子没有具体设置共享组
-
一个作业的并行度如何确定?
- 作业的并行度由当前作业中并行度最大的算子的并行度决定
- 一个作业需要多少个TaskSlot如何确定?
- 作业需要多少个taskSlot由作业的并行度决定(前提是slot共享)
Yarn应用模式作业提交流程

- 客户端提交任务,Yarn的ResourceManager启动AM
- AM中的Actor通信系统
- 启动资源管理器
- 启动分发器
- 分发器启动JobMaster
- JobMaster
- 生成逻辑流图
- 生成作业流图
- 生成执行流图
- 向资源管理器 注册请求Slot
- 资源管理器向Yarn的Resource manager申请资源
- Resource Manager启动TaskManager
- TaskManager向AM中的资源管理器注册需要的Slot
- AM的资源管理器分配slot给TaskManager
- JobMaster获取目前TaskManager现有的Slot个数
- JobMaster分配任务给各个TaskManager,各个TaskManager生成相应的物理流图并执行。
相关文章:
Flink入门之核心概念(三)
任务槽 TaskSlots: 任务槽,是TaskManager提供的用于执行Task的资源(CPU 内存) TaskManager提供的TaskSlots的个数:主要由Taskmanager所在机器的CPU核心数来决定,不能超过CPU的最大核心数 1.可以在flink/conf/flink-c…...
算法备胎hash和队列的特征——第五关青铜挑战
内容1.Hash存储方式2.Hash处理冲突的方式3.队列存储的基本特征4.如何使用链表来实现栈 1.Hash 基础 1.1Hash的概念和基本特征 哈希(Hash)也称为散列,就是把任意长度的输入,通过散列算法,变换成固定长度的输出&#…...
LLM之Agent(五)| AgentTuning:清华大学与智谱AI提出AgentTuning提高大语言模型Agent能力
论文地址:https://arxiv.org/pdf/2310.12823.pdf Github地址:https://github.com/THUDM/AgentTuning 在ChatGPT带来了大模型的蓬勃发展,开源LLM层出不穷,虽然这些开源的LLM在各自任务中表现出色,但是在真实环境下作…...
LLM之Agent(三):HuggingGPT根据用户需求自动调用Huggingface合适的模型
浙大和微软亚洲研究院开源的HuggingGPT,又名JARVIS,它可以根据用户的自然语言描述的需求就可以自动分析需要哪些AI模型,然后去Huggingface上直接调用对应的模型,最终给出用户的解决方案。 一、HuggingGPT的工作流程 它的…...
【上海大学数字逻辑实验报告】五、记忆元件测试
一、实验目的 掌握R-S触发器、D触发器和JK触发器的工作原理及其相互转换。学会用74LS00芯片构成钟控RS触发器。学会用74LS112实现D触发器学会在Quartus II上用D触发器实现JK触发器。 二、实验原理 基本R-S触发器是直接复位-置位的触发器,它是构成各种功能的触发器…...
yaml工作常用语法总结
文章目录 yaml中的| 符号 和 > 符号yaml中的 - 符号工作中常遇到的问题- 命令行中有冒号加空格,导致yaml解析报错 yaml中的| 符号 和 > 符号 在 YAML 中,| 符号表示标量块(Scalar Block)的开始。它用于表示长文本块或保持多…...
bash中通过变量中的内容获取对应的关联数组
bash中通过变量中的内容获取对应的关联数组 Bash declare 手册: https://phoenixnap.com/kb/bash-declare 实际问题: 在 bash 中创建了多个关联数组,需要根据输入的值,获取不同的关联数组。 可以使用 if 进行多次判断ÿ…...
Redis Geo操作地理位置
Redis Geo 使用场景API列表名词API列表Springboot使用mavenyamlTest 注意事项 Redis Geo 是Redis在3.2版本中新增的功能,用于存储和操作地理位置信息 使用场景 滴滴打车:这是一个对地理位置精度要求较高的场景。通过使用Redis的GEO功能,滴滴…...
市面上的AR眼镜:优缺点分析
AR眼镜是近年来备受关注的科技产品之一。它通过将虚拟信息叠加到现实世界中,为用户提供全新的视觉体验。目前,市面上的AR眼镜主要分为两类:消费级AR眼镜和企业级AR眼镜。 消费级AR眼镜 消费级AR眼镜的特点是轻便、时尚、易于佩戴࿰…...
2024年湖南省职业院校技能竞赛高职组电子与信息专业类软件测试赛项竞赛规程及样题
湖南省职业院校技能竞赛 高职组电子与信息专业类软件测试赛项竞赛规程及样题 一、竞赛内容 1.本赛项考查的技术技能和涵盖的职业典型工作任务 任务项 任务名称 职业典型工作任务 任务一 功能测试 测试计划、测试报告文档设计与编写、测试用例 设计、测试执行和 Bug记录 任务二…...
10、pytest通过assert进行断言
官方实例 # content of test_assert1.pydef f():return 3def test_function():assert f() 4def test_assert_desc():a f()# assert a % 2 0assert a % 2 0, "value was odd, should be even"解读与实操 pytest允许你使用标准python断言来验证测试中的期望值&am…...
Webpack技术入门与实践
1.概念: 本质上, webpack是一个现代JavaScript应用程序的静态模块打包器,当webpack处理应用程序时,它会递归地构建一个依赖关系图,其中包含应用程序需要的每个模块,然后将所有这些模块打包成一个或多个bund…...
HarmonyOS开发(九):数据管理
1、概述 1.1、功能简介 数据管理为开发者提供数据存储、数据管理能力。 它分为两个部分: 数据存储:提供通用数据持久化能力,根据数据特点,分为用户首选项、键值型数据库和关系型数据库。数据管理:提供高效的数据管…...
acwing-Linux学习笔记
acwing-Linux课上的笔记 acwing-Linux网址 文章目录 1.1常用文件管理命令homework作业测评命令 2.1 简单的介绍tmux与vimvimhomeworktmux教程vim教程homework中的一些操作 3 shell语法概论注释变量默认变量数组expr命令read命令echo命令printf命令test命令与判断符号[]逻辑运算…...
Python渗透测试——一、数据包的编辑工具——Scapy
Python渗透测试 一、Scapy简介二、Scapy中的分层结构三、Scapy中的常用函数四、在Scapy 中发送和接收数据包五、Scapy 中的抓包函数 一、Scapy简介 提到数据包(这里泛指帧、段和报文等)的构造,我们首先需要了解协议和分层这两个概念。在“互联世界的规则一协议”中…...
使用webstrom编写vue开启提示
1.语言服务器选择 2.文件类型–忽略的文件和文件夹,删去,node_modules,就可以点进去库了 3.禁用JSLint、TSLint 4.开启node辅助 5.如果是vite,开启自动读取,或手动指定 6.如果是Webpack,开启自动读取&#…...
linux远程桌面管理工具(xrdp)、向日葵
Windows远程桌面 linux远程桌面 使用向日葵远程桌面(手机端同理) Windows远程桌面 微软自带Remote Desktop Connection Manager (RDCMan)远程控制管理软件介绍 远程桌面连接管理器 v2.93 linux远程桌面 Windows远程桌面Ubunt…...
【力扣100】8.找到字符串中所有字母异位词
添加链接描述 class Solution:def findAnagrams(self, s: str, p: str) -> List[int]:sildingstrresult[]p.join(sorted(p))for i in range(len(s)):if len(sildingstr)<len(p):sildingstrsildingstrs[i]# print(sildingstr)if len(sildingstr)len(p):sort_sildingstr.j…...
圆通速递查询,圆通速递单号查询,用表格导出查询好的物流信息
批量查询圆通速递单号的物流信息,以表格的形式导出查询好的物流信息。 所需工具: 一个【快递批量查询高手】软件 圆通速递单号若干 操作步骤: 步骤1:运行【快递批量查询高手】软件,并登录 步骤2:点击主界…...
FLStudio中文2024中文最新汉化安装包下载
FLStudio中文21最新版本以其使用速度而闻名,是一个高度复杂的音乐制作环境。FL Studio免费,联合国音序器音频和MIDI每个复合编辑都是音乐。现代的DAW是一种非凡的野兽。首先,它在很大程度上把自己放在了(几乎)每个人记录过程的核心。其次&…...
理解 MCP 工作流:使用 Ollama 和 LangChain 构建本地 MCP 客户端
🌟 什么是 MCP? 模型控制协议 (MCP) 是一种创新的协议,旨在无缝连接 AI 模型与应用程序。 MCP 是一个开源协议,它标准化了我们的 LLM 应用程序连接所需工具和数据源并与之协作的方式。 可以把它想象成你的 AI 模型 和想要使用它…...
Go 语言接口详解
Go 语言接口详解 核心概念 接口定义 在 Go 语言中,接口是一种抽象类型,它定义了一组方法的集合: // 定义接口 type Shape interface {Area() float64Perimeter() float64 } 接口实现 Go 接口的实现是隐式的: // 矩形结构体…...
Opencv中的addweighted函数
一.addweighted函数作用 addweighted()是OpenCV库中用于图像处理的函数,主要功能是将两个输入图像(尺寸和类型相同)按照指定的权重进行加权叠加(图像融合),并添加一个标量值&#x…...
LangChain知识库管理后端接口:数据库操作详解—— 构建本地知识库系统的基础《二》
这段 Python 代码是一个完整的 知识库数据库操作模块,用于对本地知识库系统中的知识库进行增删改查(CRUD)操作。它基于 SQLAlchemy ORM 框架 和一个自定义的装饰器 with_session 实现数据库会话管理。 📘 一、整体功能概述 该模块…...
【Nginx】使用 Nginx+Lua 实现基于 IP 的访问频率限制
使用 NginxLua 实现基于 IP 的访问频率限制 在高并发场景下,限制某个 IP 的访问频率是非常重要的,可以有效防止恶意攻击或错误配置导致的服务宕机。以下是一个详细的实现方案,使用 Nginx 和 Lua 脚本结合 Redis 来实现基于 IP 的访问频率限制…...
mac 安装homebrew (nvm 及git)
mac 安装nvm 及git 万恶之源 mac 安装这些东西离不开Xcode。及homebrew 一、先说安装git步骤 通用: 方法一:使用 Homebrew 安装 Git(推荐) 步骤如下:打开终端(Terminal.app) 1.安装 Homebrew…...
MinIO Docker 部署:仅开放一个端口
MinIO Docker 部署:仅开放一个端口 在实际的服务器部署中,出于安全和管理的考虑,我们可能只能开放一个端口。MinIO 是一个高性能的对象存储服务,支持 Docker 部署,但默认情况下它需要两个端口:一个是 API 端口(用于存储和访问数据),另一个是控制台端口(用于管理界面…...
C语言中提供的第三方库之哈希表实现
一. 简介 前面一篇文章简单学习了C语言中第三方库(uthash库)提供对哈希表的操作,文章如下: C语言中提供的第三方库uthash常用接口-CSDN博客 本文简单学习一下第三方库 uthash库对哈希表的操作。 二. uthash库哈希表操作示例 u…...
【无标题】湖北理元理律师事务所:债务优化中的生活保障与法律平衡之道
文/法律实务观察组 在债务重组领域,专业机构的核心价值不仅在于减轻债务数字,更在于帮助债务人在履行义务的同时维持基本生活尊严。湖北理元理律师事务所的服务实践表明,合法债务优化需同步实现三重平衡: 法律刚性(债…...
Java设计模式:责任链模式
一、什么是责任链模式? 责任链模式(Chain of Responsibility Pattern) 是一种 行为型设计模式,它通过将请求沿着一条处理链传递,直到某个对象处理它为止。这种模式的核心思想是 解耦请求的发送者和接收者,…...
