物联网安全芯片ACL16 采用 32 位内核,片内集成多种安全密码模块 且低成本、低功耗
ACL16 芯片是研制的一款32 位的安全芯片,专门面向低成本、低功耗的应用领域, 特别针对各类 USB KEY 和安全 SE 等市场提供完善而有竞争力的解决方案。芯片采用 32 位内核,片内集成多种安全密码模块,包括SM1、 SM2、SM3、 SM4 算法以及 RSA/ECC、DES/3DES、 AES、 SHA1/SHA256 等安全算法,支持真随机数发生器。芯片提供了多种外围接口:USB2.0 全速、 SPI、 UART、 ISO7816、 I2C 等, 内置ROSC,支持免晶振应用。
ACL16 产品有两种容量类型(320K 和 256K) 的片内 eFlash,16K 字节的 ROM, 16K字节的片内 SRAM, 4K 字节算法专用SRAM,其中片内 ROM 提供各种算法接口程序供用户调用,使得开发效率提高,系统性能得到优化。
产品应用:
-
USB Key
-
读卡器
-
手持POS机
-
TF/SD卡
-
车联网终端
-
相关文章:

物联网安全芯片ACL16 采用 32 位内核,片内集成多种安全密码模块 且低成本、低功耗
ACL16 芯片是研制的一款32 位的安全芯片,专门面向低成本、低功耗的应用领域, 特别针对各类 USB KEY 和安全 SE 等市场提供完善而有竞争力的解决方案。芯片采用 32 位内核,片内集成多种安全密码模块,包括SM1、 SM2、SM3、 SM4 算法…...
【Linux top命令】
文章目录 深入了解Linux top命令:实时监控系统性能1. 什么是top命令?2. 使用top命令3. top命令交互操作 深入了解Linux top命令:实时监控系统性能 1. 什么是top命令? top命令是一个用于实时监控系统性能的文本界面工具。它显示当…...

深入理解 Promise:前端异步编程的核心概念
深入理解 Promise:前端异步编程的核心概念 本文将帮助您深入理解 Promise,这是前端异步编程的核心概念。通过详细介绍 Promise 的工作原理、常见用法和实际示例,您将学会如何优雅地处理异步操作,并解决回调地狱问题。 异步编程和…...

Linux 和 macOS 的主要区别在哪几个方面呢?
(꒪ꇴ꒪ ),Hello我是祐言QAQ我的博客主页:C/C语言,数据结构,Linux基础,ARM开发板,网络编程等领域UP🌍快上🚘,一起学习,让我们成为一个强大的攻城狮࿰…...
springboot(ssm寝室小卖部系统 宿舍小商店网站Java(codeLW)
springboot(ssm寝室小卖部系统 宿舍小商店网站Java(code&LW) 开发语言:Java 框架:ssm/springboot vue JDK版本:JDK1.8(或11) 服务器:tomcat 数据库:mysql 5.7(或8.0&#x…...

什么是web组态?一文读懂web组态
随着工业4.0的到来,物联网、大数据、人工智能等技术的融合应用,使得工业领域正在经历一场深刻的变革。在这个过程中,web组态技术以其独特的优势,正在逐渐受到越来越多企业的关注和认可。那么,什么是web组态?…...
华为OD机试真题-智能成绩表-2023年OD统一考试(C卷)
题目描述: 小明来到某学校当老师,需要将学生按考试总分或单科分数进行排名,你能帮帮他吗? 输入描述: 第1行输入两个整数,学生人数n和科目数量m。0<n<100,0<m<10 第2行输入m个科目名称,彼此之间用空格隔开。科目名称只由英文字母构成,单个长度不超过10个字符…...

YOLOv5独家原创改进:SPPF自研创新 | 可变形大核注意力(D-LKA Attention),大卷积核提升不同特征感受野的注意力机制
💡💡💡本文自研创新改进: 可变形大核注意力(D-LKA Attention)高效结合SPPF进行二次创新,大卷积核提升不同特征感受野的注意力机制。 收录 YOLOv5原创自研 https://blog.csdn.net/m0_63774211/category_12511931.html 💡💡💡全网独家首发创新(原创),适合p…...
算法:进制之前的转换
1. X进制转换成十进制-V1: /*** 笨办法,从左往右开始* Tips:只支持正数** param num* param radix* return*/private static Integer xToTenV1(String num, Integer radix) {if (num.length() 0 || num.charAt(0) -) {throw new IllegalArg…...

VS2009和VS2022的错误列表可复制粘贴为表格
在VS2019或VS2022中,可看到如下错误列表: 如果复制这两行错误信息: 然后把它粘贴到word文件,就可以看到以下表格: 严重性 代码 说明 项目 文件 行 禁止显示状态 错误(活动) E0020 未定义标识符 "dd"…...

springboot3 liquibase SQL执行失败自动回滚,及自动打tag
一: 自动执行回滚, 已执行成功的忽略,新sql执行失败则执行新sql文件中的回滚sql pom.xml <dependency> <groupId>org.liquibase</groupId> <artifactId>liquibase-core</artifactId> <version>4.25.0&…...

Flink入门之核心概念(三)
任务槽 TaskSlots: 任务槽,是TaskManager提供的用于执行Task的资源(CPU 内存) TaskManager提供的TaskSlots的个数:主要由Taskmanager所在机器的CPU核心数来决定,不能超过CPU的最大核心数 1.可以在flink/conf/flink-c…...

算法备胎hash和队列的特征——第五关青铜挑战
内容1.Hash存储方式2.Hash处理冲突的方式3.队列存储的基本特征4.如何使用链表来实现栈 1.Hash 基础 1.1Hash的概念和基本特征 哈希(Hash)也称为散列,就是把任意长度的输入,通过散列算法,变换成固定长度的输出&#…...

LLM之Agent(五)| AgentTuning:清华大学与智谱AI提出AgentTuning提高大语言模型Agent能力
论文地址:https://arxiv.org/pdf/2310.12823.pdf Github地址:https://github.com/THUDM/AgentTuning 在ChatGPT带来了大模型的蓬勃发展,开源LLM层出不穷,虽然这些开源的LLM在各自任务中表现出色,但是在真实环境下作…...

LLM之Agent(三):HuggingGPT根据用户需求自动调用Huggingface合适的模型
浙大和微软亚洲研究院开源的HuggingGPT,又名JARVIS,它可以根据用户的自然语言描述的需求就可以自动分析需要哪些AI模型,然后去Huggingface上直接调用对应的模型,最终给出用户的解决方案。 一、HuggingGPT的工作流程 它的…...

【上海大学数字逻辑实验报告】五、记忆元件测试
一、实验目的 掌握R-S触发器、D触发器和JK触发器的工作原理及其相互转换。学会用74LS00芯片构成钟控RS触发器。学会用74LS112实现D触发器学会在Quartus II上用D触发器实现JK触发器。 二、实验原理 基本R-S触发器是直接复位-置位的触发器,它是构成各种功能的触发器…...
yaml工作常用语法总结
文章目录 yaml中的| 符号 和 > 符号yaml中的 - 符号工作中常遇到的问题- 命令行中有冒号加空格,导致yaml解析报错 yaml中的| 符号 和 > 符号 在 YAML 中,| 符号表示标量块(Scalar Block)的开始。它用于表示长文本块或保持多…...
bash中通过变量中的内容获取对应的关联数组
bash中通过变量中的内容获取对应的关联数组 Bash declare 手册: https://phoenixnap.com/kb/bash-declare 实际问题: 在 bash 中创建了多个关联数组,需要根据输入的值,获取不同的关联数组。 可以使用 if 进行多次判断ÿ…...
Redis Geo操作地理位置
Redis Geo 使用场景API列表名词API列表Springboot使用mavenyamlTest 注意事项 Redis Geo 是Redis在3.2版本中新增的功能,用于存储和操作地理位置信息 使用场景 滴滴打车:这是一个对地理位置精度要求较高的场景。通过使用Redis的GEO功能,滴滴…...

市面上的AR眼镜:优缺点分析
AR眼镜是近年来备受关注的科技产品之一。它通过将虚拟信息叠加到现实世界中,为用户提供全新的视觉体验。目前,市面上的AR眼镜主要分为两类:消费级AR眼镜和企业级AR眼镜。 消费级AR眼镜 消费级AR眼镜的特点是轻便、时尚、易于佩戴࿰…...

(LeetCode 每日一题) 3442. 奇偶频次间的最大差值 I (哈希、字符串)
题目:3442. 奇偶频次间的最大差值 I 思路 :哈希,时间复杂度0(n)。 用哈希表来记录每个字符串中字符的分布情况,哈希表这里用数组即可实现。 C版本: class Solution { public:int maxDifference(string s) {int a[26]…...

突破不可导策略的训练难题:零阶优化与强化学习的深度嵌合
强化学习(Reinforcement Learning, RL)是工业领域智能控制的重要方法。它的基本原理是将最优控制问题建模为马尔可夫决策过程,然后使用强化学习的Actor-Critic机制(中文译作“知行互动”机制),逐步迭代求解…...

智慧工地云平台源码,基于微服务架构+Java+Spring Cloud +UniApp +MySql
智慧工地管理云平台系统,智慧工地全套源码,java版智慧工地源码,支持PC端、大屏端、移动端。 智慧工地聚焦建筑行业的市场需求,提供“平台网络终端”的整体解决方案,提供劳务管理、视频管理、智能监测、绿色施工、安全管…...

MongoDB学习和应用(高效的非关系型数据库)
一丶 MongoDB简介 对于社交类软件的功能,我们需要对它的功能特点进行分析: 数据量会随着用户数增大而增大读多写少价值较低非好友看不到其动态信息地理位置的查询… 针对以上特点进行分析各大存储工具: mysql:关系型数据库&am…...

屋顶变身“发电站” ,中天合创屋面分布式光伏发电项目顺利并网!
5月28日,中天合创屋面分布式光伏发电项目顺利并网发电,该项目位于内蒙古自治区鄂尔多斯市乌审旗,项目利用中天合创聚乙烯、聚丙烯仓库屋面作为场地建设光伏电站,总装机容量为9.96MWp。 项目投运后,每年可节约标煤3670…...

P3 QT项目----记事本(3.8)
3.8 记事本项目总结 项目源码 1.main.cpp #include "widget.h" #include <QApplication> int main(int argc, char *argv[]) {QApplication a(argc, argv);Widget w;w.show();return a.exec(); } 2.widget.cpp #include "widget.h" #include &q…...

Module Federation 和 Native Federation 的比较
前言 Module Federation 是 Webpack 5 引入的微前端架构方案,允许不同独立构建的应用在运行时动态共享模块。 Native Federation 是 Angular 官方基于 Module Federation 理念实现的专为 Angular 优化的微前端方案。 概念解析 Module Federation (模块联邦) Modul…...

DBAPI如何优雅的获取单条数据
API如何优雅的获取单条数据 案例一 对于查询类API,查询的是单条数据,比如根据主键ID查询用户信息,sql如下: select id, name, age from user where id #{id}API默认返回的数据格式是多条的,如下: {&qu…...

Ascend NPU上适配Step-Audio模型
1 概述 1.1 简述 Step-Audio 是业界首个集语音理解与生成控制一体化的产品级开源实时语音对话系统,支持多语言对话(如 中文,英文,日语),语音情感(如 开心,悲伤)&#x…...

(转)什么是DockerCompose?它有什么作用?
一、什么是DockerCompose? DockerCompose可以基于Compose文件帮我们快速的部署分布式应用,而无需手动一个个创建和运行容器。 Compose文件是一个文本文件,通过指令定义集群中的每个容器如何运行。 DockerCompose就是把DockerFile转换成指令去运行。 …...