当前位置: 首页 > news >正文

最长子序列问题(LCS)--动态规划解法

题目描述:

如果Z既是X的子序列,又是Y的子序列,则称Z为X和Y的公共子序列。

如果给定X、Y,求出Y及其长度。

示例:

输入

ABCPDSFJGODIHJOFDIUSHGD
OSDIHGKODGHBLKSJBHKAGHI

输出

SDIHODSHG
9

分析:

c[i][j]表示X从0到i与Y从0到j之间公共子序列的长度。

代码 :

//最长子序列问题,不是最长字串问题
#include<iostream>
#include<stack>
using namespace std;const int N = 1000;
int dp[N][N] = { 0 };
int path[N][N];
int  main()
{string a, b;cin >> a;cin >> b;int lena = a.size();int lenb = b.size();for (int i = 0; i <lena-1; i++){for (int j = 0; j <lenb-1; j++){if (a[i] == b[j]){dp[i+1][j+1] = dp[i][j] + 1;path[i + 1][j + 1] = 1;}else if (dp[i][j + 1] >= dp[i + 1][j]){dp[i + 1][j + 1] = dp[i][j + 1];path[i + 1][j + 1] = 2;}else{dp[i + 1][j + 1] = dp[i+1][j];path[i + 1][j + 1] = 3;}}}cout << "dp数组为:" << endl;for (int i = 0; i < lena; i++){for (int j = 0; j < lenb; j++){cout << dp[i][j] << ' ';}cout << endl;}cout << "最长子序列数为:" << dp[lena - 1][lenb - 1] << endl;//存放最长子序列stack<char>same;for (int i = lena - 1, j = lenb - 1; i >= 0 && j >= 0;){if (path[i][j] == 1){i--;j--;same.push(a[i]);}else if (path[i][j] == 2){i--;}else{j--;}}cout << "最长子序列为";while (!same.empty()){cout << same.top();same.pop();}cout << endl;system("pause");return 0;}

相关文章:

最长子序列问题(LCS)--动态规划解法

题目描述&#xff1a; 如果Z既是X的子序列&#xff0c;又是Y的子序列&#xff0c;则称Z为X和Y的公共子序列。 如果给定X、Y&#xff0c;求出Y及其长度。 示例&#xff1a; 输入 ABCPDSFJGODIHJOFDIUSHGD OSDIHGKODGHBLKSJBHKAGHI 输出 SDIHODSHG 9 分析&#xff1a; c…...

实时流式计算 kafkaStream

文章目录 实时流式计算Kafka StreamKafka Streams 的关键概念KStreamKafka Stream入门案例编写SpringBoot 集成 Kafka Stream 实时流式计算 一般流式计算会与批量计算相比较 流式计算就相当于上图的右侧扶梯&#xff0c;是可以源源不断的产生数据&#xff0c;源源不断的接收数…...

西南科技大学模拟电子技术实验七(集成运算放大器的非线性应用)预习报告

一、计算/设计过程 说明:本实验是验证性实验,计算预测验证结果。是设计性实验一定要从系统指标计算出元件参数过程,越详细越好。用公式输入法完成相关公式内容,不得贴手写图片。(注意:从抽象公式直接得出结果,不得分,页数可根据内容调整) 预习计算内容根据运放的非线…...

Ubuntu与Windows通讯传输文件(FTP服务器版)(没用的方法,无法施行)

本文介绍再Windows主机上建立FTP服务器&#xff0c;并且在Ubuntu虚拟机上面访问Windows上FTP服务器的方法 只要按照上图配置就可以了 第二部&#xff1a;打开IIS管理控制台 右击网站&#xff0c;新建FTP站点。需要注意的一点是在填写IP地址的时候&#xff0c;只需要填写Window…...

2024年AI视频识别技术的6大发展趋势预测

随着人工智能技术的快速发展&#xff0c;AI视频识别技术也将会得到进一步的发展和应用。2023年已经进入尾声&#xff0c;2024年即将来临&#xff0c;那么AI视频识别技术又将迎来怎样的发展趋势&#xff1f;本文将对2023年的AI视频技术做一个简单的盘点并对2024年的发展趋势进行…...

一篇文章了解JDK的前世今生

我们每天都在开发Java,每天都在使用JDK,那么我们了解JDK的发展史吗,这篇文章将带你深入了解JDK的发展史。 JDK(Java Development Kit)是Java开发者工具包,是用于编写Java程序和运行Java程序的软件开发工具集。自从1995年Java语言首次发布以来,JDK已经经历了数十年的发展…...

Redisson出现问题总结

org.redisson.client.RedisAuthRequiredException: NOAUTH Authentication required… channel: 出现此问题的原因为没有redis权限。解决方案在setAddress()后面加上setPassword()方法。 config.useSingleServer().setAddress("redis://localhost:6379").setPasswo…...

领域驱动架构(DDD)建模

一、背景 常见的软件开发方式是拿到产品需求后&#xff0c;直接考虑数据库中表应该如何设计&#xff0c;这种方式已经将设计与业务需求脱节&#xff0c;而更多的是直接考虑应该如何实现了&#xff0c;这有点本末倒置。而DDD是从领域(问题域)为出发点进行的设计方法。 领域驱动…...

PostgreSQL从小白到高手教程 - 第38讲:数据库备份

PostgreSQL从小白到专家&#xff0c;是从入门逐渐能力提升的一个系列教程&#xff0c;内容包括对PG基础的认知、包括安装使用、包括角色权限、包括维护管理、、等内容&#xff0c;希望对热爱PG、学习PG的同学们有帮助&#xff0c;欢迎持续关注CUUG PG技术大讲堂。 第38讲&#…...

OpenGL ES eglCreatePbufferSurface() 和 eglCreateWindowSurface() 的对比和使用

一、介绍 相同点&#xff1a; eglCreatePbufferSurface 和 eglCreateWindowSurface 都是 OpenGL ES 中用于创建不同类型的EGL表面的函数&#xff0c;以便在OpenGL ES中进行渲染。 不同点&#xff1a; 选择使用哪种表面类型取决于你的需求。如果你只是需要在内存中进行离屏渲…...

python之马尔科夫链(Markov Chain)

马尔可夫链&#xff08;Markov Chain&#xff09;是一种随机过程&#xff0c;具有“马尔可夫性质”&#xff0c;即在给定当前状态的条件下&#xff0c;未来状态的概率分布仅依赖于当前状态&#xff0c;而与过去状态无关。马尔可夫链在很多领域都有广泛的应用&#xff0c;包括蒙…...

数据库管理-第123期 Oracle相关两个参数(202301205)

数据库管理-第123期 Oracle相关两个参数&#xff08;202301205&#xff09; 最近在群聊中看到俩和Oracle数据库相关的俩参数&#xff0c;一个是Oracle数据库本身的&#xff0c;一个是来自于Weblogic的&#xff0c;挺有趣的&#xff0c;本期研究一下。&#xff08;本期涉及参数…...

掌握vue中国际化使用及配置

文章目录 &#x1f341;i18n组件安装&#x1f341;项目中配置 vue-i18n&#x1f341;编写语言包&#x1f341;国际化的使用 随着互联网的普及和全球化的发展&#xff0c;开发国际化的应用程序已经成为一种趋势。因此&#xff0c;将 VUE 应用程序国际化是非常有必要的。 以下是…...

Ubuntu编译文件安装SNMP服务

net-snmp源码下载 http://www.net-snmp.org/download.html 编译步骤 指定参数编译 ./configure --prefix/root/snmpd --with-default-snmp-version"2" --with-logfile"/var/log/snmpd.log" --with-persistent-directory"/var/net-snmp" --wi…...

3D Web可视化平台助力Aras开发PLM系统:提供数据访问、可视化和发布功能

HOOPS中文网慧都科技是HOOPS全套产品中国地区指定授权经销商&#xff0c;提供3D软件开发工具HOOPS售卖、试用、中文试用指导服务、中文技术支持。http://techsoft3d.evget.com/ Aras是一个面向数字化工业应用的开放性平台&#xff0c;帮助世界领先的复杂互联产品制造商转变其产…...

Graphpad Prism10.1.0 安装教程 (含Win/Mac版)

GraphPad Prism GraphPad Prism是一款非常专业强大的科研医学生物数据处理绘图软件&#xff0c;它可以将科学图形、综合曲线拟合&#xff08;非线性回归&#xff09;、可理解的统计数据、数据组织结合在一起&#xff0c;除了最基本的数据统计分析外&#xff0c;还能自动生成统…...

【动态规划】路径问题_不同路径_C++

题目链接&#xff1a;leetcode不同路径 目录 题目解析&#xff1a; 算法原理 1.状态表示 2.状态转移方程 3.初始化 4.填表顺序 5.返回值 编写代码 题目解析&#xff1a; 题目让我们求总共有多少条不同的路径可到达右下角&#xff1b; 由题可得&#xff1a; 机器人位于…...

Python并发-线程和进程

一、线程和进程对应的问题 **1.进程&#xff1a;**CPU密集型也叫计算密集型&#xff0c;指的是系统的硬盘、内存性能相对CPU要好很多&#xff0c;此时&#xff0c;系统运作大部分的状况是CPU Loading 100%&#xff0c;CPU要读/写I/O(硬盘/内存)&#xff0c;I/O在很短的时间就可…...

微信小程序适配方案:rpx(responsive pixel响应式像素单位)

小程序适配单位&#xff1a;rpx 规定任何屏幕下宽度为750rpx 小程序会根据屏幕的宽度自动计算rpx值的大小 Iphone6下&#xff1a;1rpx 1物理像素 0.5css 小程序编译后&#xff0c;rpx会做一次px换算&#xff0c;换算是以375个物理像素为基准&#xff0c;也就是在一个宽度…...

vue2 echarts饼状图,柱状图,折线图,简单封装以及使用

vue2 echarts饼状图&#xff0c;柱状图&#xff0c;折线图&#xff0c;简单封装以及使用 1. 直接上代码&#xff08;复制可直接用&#xff0c;请根据自己的文件修改引用地址&#xff0c;图表只是简单封装&#xff0c;可根据自身功能&#xff0c;进行进一步配置。&#xff09; …...

JavaSec-RCE

简介 RCE(Remote Code Execution)&#xff0c;可以分为:命令注入(Command Injection)、代码注入(Code Injection) 代码注入 1.漏洞场景&#xff1a;Groovy代码注入 Groovy是一种基于JVM的动态语言&#xff0c;语法简洁&#xff0c;支持闭包、动态类型和Java互操作性&#xff0c…...

关于 WASM:1. WASM 基础原理

一、WASM 简介 1.1 WebAssembly 是什么&#xff1f; WebAssembly&#xff08;WASM&#xff09; 是一种能在现代浏览器中高效运行的二进制指令格式&#xff0c;它不是传统的编程语言&#xff0c;而是一种 低级字节码格式&#xff0c;可由高级语言&#xff08;如 C、C、Rust&am…...

IT供电系统绝缘监测及故障定位解决方案

随着新能源的快速发展&#xff0c;光伏电站、储能系统及充电设备已广泛应用于现代能源网络。在光伏领域&#xff0c;IT供电系统凭借其持续供电性好、安全性高等优势成为光伏首选&#xff0c;但在长期运行中&#xff0c;例如老化、潮湿、隐裂、机械损伤等问题会影响光伏板绝缘层…...

破解路内监管盲区:免布线低位视频桩重塑停车管理新标准

城市路内停车管理常因行道树遮挡、高位设备盲区等问题&#xff0c;导致车牌识别率低、逃费率高&#xff0c;传统模式在复杂路段束手无策。免布线低位视频桩凭借超低视角部署与智能算法&#xff0c;正成为破局关键。该设备安装于车位侧方0.5-0.7米高度&#xff0c;直接规避树枝遮…...

LOOI机器人的技术实现解析:从手势识别到边缘检测

LOOI机器人作为一款创新的AI硬件产品&#xff0c;通过将智能手机转变为具有情感交互能力的桌面机器人&#xff0c;展示了前沿AI技术与传统硬件设计的完美结合。作为AI与玩具领域的专家&#xff0c;我将全面解析LOOI的技术实现架构&#xff0c;特别是其手势识别、物体识别和环境…...

leetcode_69.x的平方根

题目如下 &#xff1a; 看到题 &#xff0c;我们最原始的想法就是暴力解决: for(long long i 0;i<INT_MAX;i){if(i*ix){return i;}else if((i*i>x)&&((i-1)*(i-1)<x)){return i-1;}}我们直接开始遍历&#xff0c;我们是整数的平方根&#xff0c;所以我们分两…...

6.计算机网络核心知识点精要手册

计算机网络核心知识点精要手册 1.协议基础篇 网络协议三要素 语法&#xff1a;数据与控制信息的结构或格式&#xff0c;如同语言中的语法规则语义&#xff1a;控制信息的具体含义和响应方式&#xff0c;规定通信双方"说什么"同步&#xff1a;事件执行的顺序与时序…...

前端打包工具简单介绍

前端打包工具简单介绍 一、Webpack 架构与插件机制 1. Webpack 架构核心组成 Entry&#xff08;入口&#xff09; 指定应用的起点文件&#xff0c;比如 src/index.js。 Module&#xff08;模块&#xff09; Webpack 把项目当作模块图&#xff0c;模块可以是 JS、CSS、图片等…...

Monorepo架构: 项目管理模式对比与考量

关于 monorepo 相关概念及项目管理模式 在软件开发中&#xff0c;尤其是前端项目&#xff0c;我们会涉及到不同的项目管理模式&#xff0c;这里先介绍几个重要的概念“monorepo”是当前较为热门的一种项目管理方式&#xff0c;虽然很多人可能听说过&#xff0c;但可能在实际项…...

Qt Quick Dialogs模块功能及架构

Qt Quick Dialogs 是 Qt Quick 的一个附加模块&#xff0c;提供了一套用于创建和使用系统对话框的 QML 类型。在 Qt 6.0 中&#xff0c;这个模块经过了重构和增强。 一、主要功能和特点 1. 对话框类型 Qt Quick Dialogs 在 Qt 6.0 中提供了以下标准对话框类型&#xff1a; …...