当前位置: 首页 > news >正文

ELK(四)—els基本操作

目录

  • elasticsearch基本概念
    • RESTful API
    • 创建非结构化索引
      • (增)创建空索引
      • (删)删除索引
      • (改)插入数据
      • (改)数据更新
      • (查)搜索数据(id)
      • (查)搜索数据(全部)
      • (查)关键字搜索数据
      • (查)DSL搜索
      • 其他(聚合)

elasticsearch基本概念

Elasticsearch 是一个分布式搜索引擎,用于全文搜索、分析和可视化大规模数据。以下是 Elasticsearch 中一些基本概念:

  1. 索引(Index)
    • Elasticsearch 中的数据存储单元,类似于传统数据库中的数据库。每个索引包含一组相关的文档。
  2. 文档(Document)
    • 索引中的基本信息单元,可以是 JSON、XML、或其他格式的数据。文档是 Elasticsearch 中可被索引和搜索的基本数据单元。
  3. 类型(Type)(在7.x版本之前):
    • Elasticsearch 6.x及更早版本中,索引可以包含一个或多个类型,每个类型定义了文档的结构。从 Elasticsearch 7.x 开始,不再支持多类型,一个索引只有一个默认类型 “_doc”。
  4. 映射(Mapping)
    • 定义了索引中的文档结构,包括每个字段的类型和属性。映射在创建索引时自动创建,也可以手动定义。
  5. 节点(Node)
    • Elasticsearch 集群中的单个服务器,用于存储数据和执行数据操作。每个节点属于一个集群,并且有唯一的名称。
  6. 集群(Cluster)
    • 由一个或多个节点组成的集合,共同存储数据并提供联合的搜索能力。集群有一个唯一的名称。
  7. 分片(Shard)
    • 索引可以被分割成多个分片,每个分片是一个独立的索引。分片允许数据水平扩展,提高并发性能。
  8. 副本(Replica)
    • 每个分片可以有零个或多个副本。副本是分片的精确拷贝,用于提高高可用性和故障恢复。
  9. 查询(Query)
    • 用于搜索 Elasticsearch 中文档的条件。可以通过查询DSL(Domain Specific Language)来构建各种类型的查询。
  10. 聚合(Aggregation)
    • 用于分析和统计数据的机制,可以计算平均值、总和、最小值等。
  11. 索引别名(Index Alias)
    • 为索引提供一个可读的名称,可以用于简化索引操作和在查询中引用多个索引。
  12. 分析器(Analyzer)
    • 用于在索引和查询阶段处理文本数据的组件,包括分词、小写化、去停用词等。
  13. 倒排索引(Inverted Index)
    • Elasticsearch 使用倒排索引来加速搜索,它记录了每个词项出现在哪些文档中。

这些是 Elasticsearch 中一些基本的概念,了解它们有助于更好地理解和使用 Elasticsearch 进行数据存储和检索。

RESTful API

在Elasticsearch中,提供了功能丰富的RESTful API的操作,包括基本的CRUD、创建索引、删除索引等操作。

创建非结构化索引

在Lucene中,创建索引是需要定义字段名称以及字段的类型的,在Elasticsearch中提供了非结构化的索引,就是不需要创建索引结构,即可写入数据到索引中,实际上在Elasticsearch底层会进行结构化操作,此操作对用户是透明的。

(增)创建空索引

PUT /elk
{"settings":{"index":{"number_of_shards":"2","number_of_replicas":"0"}}
}

这里我选择postman进行测试。

image.png

去elasticsearch-head看是否索引创建是否成功。

image.png

可以看到索引已经创建成功了。

(删)删除索引

DELETE /elk
{"acknowledged": true
}

在postman中进行删除操作

image.png

检查是否删除成功

image.png

可以看到已经删除成功了

(改)插入数据

上面我们已经学会了如何创建好删除索引,现在我们进行数据的添加操作。

URL规则:
POST /{索引}/{类型}/{id}

插入如下数据。

{
"id":1001,
"name":"王五",
"age":18,
"sex":"男"
}

image.png

postman中显示插入成功了。

浏览器上是否也是插入成功呢?

image.png

可以看到数据已经成功插入了。

(改)数据更新

在Elasticsearch中,文档数据是不为修改的,但是可以通过覆盖的方式进行更新。

{
"id":1001,
"name":"王老五",
"age":55,
"sex":"男"
}

image.png

image.png

服务器中的数据也成功更新了。

问题与探究问题与探究问题与探究

可以看到数据已经被覆盖了。问题来了,可以局部更新吗? – 可以的。前面不是说,文档数据不能更新吗?
其实是这样的:在内部,依然会查询到这个文档数据,然后进行覆盖操作,步骤如下:

  1. 从旧文档中检索JSON
  2. 修改它
  3. 删除旧文档
  4. 索引新文档
#注意:这里多了_update标识POST /haoke/_update/1001
{
"doc":{
"age":66
}
}

image.png

image.png

可以看到数据已经成功更新了。

我们需要id存在,否则会报错,也就是404

image.png

当id存在,我们可以往数据添加原先没有的数据。

image.png

image.png

(查)搜索数据(id)

GET /elk/_doc/id

image.png

我们也可以直接在elasticsearch中进行搜索

image.png

(查)搜索数据(全部)

GET  /elk/_search

image.png

同样的,查询全部也可以直接在elasticsearch-head中的基本查询中进行搜索。

image.png

(查)关键字搜索数据

#格式
GET /elk/_search?q=字段名:对应值#查询年龄等于13的用户
GET /elk/_search?q=age:20

image.png

#查询年龄等于13的用户
GET /elk/_search?q=address:湖南

image.png

(查)DSL搜索

Elasticsearch的DSL(Domain-Specific Language)是一种查询语言,用于在Elasticsearch中执行搜索操作。DSL允许用户以结构化的方式构建复杂的查询,以满足不同的搜索需求。DSL查询通常以JSON格式表示,并包含各种查询和过滤条件。

以下是一些常见的DSL查询语法和查询类型的详细解释:

  1. Match Query:
    Match查询用于执行全文本搜索,它会在指定的字段中查找包含特定词语的文档。

    {"query": {"match": {"field_name": "search_term"}}
    }
    
    
    

    匹配年龄为20的数据

    POST /elk/_search
    #请求体
    {"query" : {"match" : {"age" : 23}}
    }
    

    image.png

    匹配多个姓名数据

    POST /elk/_search
    #请求数据
    {"query" : {"match" : {"name" : "张四 李三 王老五"}}
    }
    

    image.png

    高亮显示

    POST /elk/_search
    #请求数据
    {"query": {"match": {"name": "王老五"}},"highlight": {"fields": {"name": {}}}
    }
    

    image.png

  2. Term Query:
    Term查询用于匹配确切的词语。它通常用于精确匹配,而不进行全文本搜索。

    {"query": {"term": {"field_name": "exact_term"}}
    }
    
  3. Bool Query: Bool查询允许将多个查询组合在一起,并使用逻辑运算符(must、must_not、should)来定义查询逻辑。

    {"query": {"bool": {"must": [{ "match": { "field1": "value1" } },{ "term": { "field2": "value2" } }],"must_not": [{ "range": { "field3": { "gte": "2022-01-01" } } }],"should": [{ "term": { "field4": "value3" } }]}}
    }
    

    查询年龄大于18岁的男性用户。

    POST /elk/user/_search
    #请求数据
    {"query": {"bool": {"filter": {"range": {"age": {"gt": 18}}},"must": {"match": {"sex": "男"}}}}
    }
    
  4. Range Query:
    Range查询用于匹配指定范围内的值。

    {"query": {"range": {"field_name": {"gte": "min_value","lte": "max_value"}}}
    }
    
  5. Wildcard Query:
    通配符查询允许使用通配符进行模糊匹配。

    {"query": {"wildcard": {"field_name": "search*term"}}
    }
    
  6. Nested Query:
    Nested查询用于在嵌套文档中执行查询。

    {"query": {"nested": {"path": "nested_field","query": {"match": {"nested_field.property": "value"}}}}
    }
    

这些是一些基本的DSL查询示例。在实际应用中,可以将这些查询类型组合使用,以满足特定的搜索需求。此外,Elasticsearch还支持聚合(Aggregation)、排序(Sorting)、分页(Pagination)等高级功能,可以进一步扩展查询的能力。

其他(聚合)

在Elasticsearch中,支持聚合操作,类似SQL中的group by操作。

POST /elk/_search
{"aggs": {"all_interests": {"terms": {"field": "age"}}}
}

image.png

相关文章:

ELK(四)—els基本操作

目录 elasticsearch基本概念RESTful API创建非结构化索引(增)创建空索引(删)删除索引(改)插入数据(改)数据更新(查)搜索数据(id)&…...

【100天精通Python】Day75:Python机器学习-第一个机器学习小项目_鸾尾花分类项目(上)

目录 1 机器学习中的Helloworld _鸾尾花分类项目 2 导入项目所需类库和鸾尾花数据集 2.1 导入类库 2.2 scikit-learn 库介绍 (1)主要特点: (2)常见的子模块: 3 导入鸾尾花数据集 3.1 概述数据 3.…...

gitlab高级功能之容器镜像仓库

今天给大家介绍一个gitlab的高级功能 - Container Registry,该功能可以实现docker镜像的仓库功能,将gitlab上的代码仓的代码通过docker构建后并推入到容器仓库中,好处就是无需再额外部署一套docker仓库。 文章目录 1. 参考文档2. Container R…...

线程的使用(二)

新增实现方式之实现Callable接口 特点 1、可以有返回值。 2、方法可以抛异常。 3、支持泛型的返回值。 4、需借助FutureTask类,比如获取返回值。 步骤 1、创建一个实现Callable接口的实现类。 2、重写call方法, 将此线程需执行的操作声明在call&…...

k8s之镜像拉取时使用secret

k8s之secret使用 一、说明二、secret使用2.1 secret类型2.2 创建secret2.3 配置secret 一、说明 从公司搭建的网站镜像仓库,使用k8s部署服务时拉取镜像失败,显示未授权: 需要在拉取镜像时添加认证信息. 关于secret信息,参考: https://www.…...

mysql面试题——MVCC

一:什么是MVCC? 多版本并发控制,更好的方式去处理读-写冲突,就是为了查询一些正在被另一个事务更新的行,并且可以看到它们被更新之前的值,这样在做查询的时候就不用等待另一个事务释放锁。 二&#xff1a…...

【华为数据之道学习笔记】1-2华为数字化转型与数据治理

传统企业通过制造先进的机器来提升生产效率,但是未来,如何结构性地提升服务和运营效率,如何用更低的成本获取更好的产品,成了时代性的问题。数字化转型归根结底就是要解决企业的两大问题:成本和效率,并围绕…...

微服务01

笔记: day03-微服务01 - 飞书云文档 (feishu.cn) 数据库连接不上? 要在虚拟机启动MySQL容器。docker start mysql 服务治理 服务提供者:暴露服务接口,供其他服务调用 服务消费者:调用其他服务提供的接口 注册中心&…...

作业12.8

1. 使用手动连接,将登录框中的取消按钮使用qt4版本的连接到自定义的槽函数中,在自定义的槽函数中调用关闭函数。将登录按钮使用qt5版本的连接到自定义的槽函数中,在槽函数中判断ui界面上输入的账号是否为"admin",密码是…...

已解决error: (-215:Assertion failed) inv_scale_x > 0 in function ‘cv::resize‘

需求背景 欲使用opencv的resize函数将图像沿着纵轴放大一倍,即原来的图像大小为(384, 512), 现在需要将图像放大为(768, 512)。 源码 import cv2 import numpy as np# 生成初始图像 img np.zeros((384, 512), dtypenp.uint8) img[172:212, 32:-32] 255 H, W …...

Android View.inflate 和 LayoutInflater.from(this).inflate 的区别

前言 两个都是布局加载器,而View.inflate是对 LayoutInflater.from(context).inflate的封装,功能相同,案例使用了dataBinding。 View.inflate(context, layoutResId, root) LayoutInflater.from(context).inflate(layoutResId, root, fals…...

etcd 与 Consul 的一致性读对比

本文分享和对比了 etcd 和 Consul 这两个存储的一致性读的实现。 作者:戴岳兵,爱可生研发中心工程师,负责项目的需求开发与维护工作。 爱可生开源社区出品,原创内容未经授权不得随意使用,转载请联系小编并注明来源。 本…...

Docker 安装Apache Superset 并实现汉化和快速入门

什么是Apache Superset Apache Superset是一个现代化的企业级商业智能Web应用程序。Apache Superset 支持用户的各种数据类型可视化和数据分析,支持简单图饼图到复杂的地理空间图表。Apache Superset 是一个轻量级、简单化、直观化、可配置的BI 框架。 Docker 安…...

差异计算基础知识 - 了解期末业务操作、WIP 和差异

原文地址:Basics of variance calculation-Understanding Period End activities, WIP and Variances | SAP Blogs 大家好, 这是我在成本核算方面的第六份文件,旨在解释期末的差异计算和相关活动。 我将引导您完成期末活动和差异计算。在本文…...

spring boot定时器实现定时同步数据

文章目录 目录 文章目录 前言 一、依赖和目录结构 二、使用步骤 2.1 两个数据源的不同引用配置 2.2 对应的mapper 2.3 定时任务处理 总结 前言 一、依赖和目录结构 <dependencies><dependency><groupId>org.springframework.boot</groupId><artifa…...

第一百九十六回 通过蓝牙发送数据的细节

文章目录 1. 概念介绍2. 实现方法3. 代码与效果3.1 示例代码3.2 运行效果4. 经验总结我们在上一章回中介绍了"分享三个使用TextField的细节"沉浸式状态样相关的内容,本章回中将介绍SliverList组件.闲话休提,让我们一起Talk Flutter吧。 1. 概念介绍 通过蓝牙设备…...

26.Python 网络爬虫

目录 1.网络爬虫简介2.使用urllib3.使用request4.使用BeautifulSoup 1.网络爬虫简介 网络爬虫是一种按照一定的规则&#xff0c;自动爬去万维网信息的程序或脚本。一般从某个网站某个网页开始&#xff0c;读取网页的内容&#xff0c;同时检索页面包含的有用链接地址&#xff0…...

Spring Boot 在启动之前还做了哪些准备工作?

目录 一:初始化资源加载器 二:校验主要源 三:设置主要源 四:推断 Web 应用类型<...

SQL语句常用语法(开发场景中)

一、SQL语句常用小场景 1.查询某个表信息&#xff0c;表中某些字段为数据字典需要进行转义 SELECTt.ID,CASEWHEN t.DINING_TYPE 1 THEN早餐WHEN t.DINING_TYPE 2 THEN午餐WHEN t.DINING_TYPE 3 THEN晚餐END AS diningTypeStr from student t 2.联表查询语法 select si.*…...

HarmonyOS应用开发者认证:开启全新的智能设备开发之旅

随着科技的不断发展&#xff0c;人工智能、物联网等技术逐渐渗透到我们的日常生活中。在这个智能化的时代&#xff0c;华为推出了一款全新的操作系统——HarmonyOS&#xff0c;旨在为各种智能设备提供统一的操作系统&#xff0c;实现设备之间的无缝连接和协同工作。作为开发者&…...

理解 MCP 工作流:使用 Ollama 和 LangChain 构建本地 MCP 客户端

&#x1f31f; 什么是 MCP&#xff1f; 模型控制协议 (MCP) 是一种创新的协议&#xff0c;旨在无缝连接 AI 模型与应用程序。 MCP 是一个开源协议&#xff0c;它标准化了我们的 LLM 应用程序连接所需工具和数据源并与之协作的方式。 可以把它想象成你的 AI 模型 和想要使用它…...

TRS收益互换:跨境资本流动的金融创新工具与系统化解决方案

一、TRS收益互换的本质与业务逻辑 &#xff08;一&#xff09;概念解析 TRS&#xff08;Total Return Swap&#xff09;收益互换是一种金融衍生工具&#xff0c;指交易双方约定在未来一定期限内&#xff0c;基于特定资产或指数的表现进行现金流交换的协议。其核心特征包括&am…...

【决胜公务员考试】求职OMG——见面课测验1

2025最新版&#xff01;&#xff01;&#xff01;6.8截至答题&#xff0c;大家注意呀&#xff01; 博主码字不易点个关注吧,祝期末顺利~~ 1.单选题(2分) 下列说法错误的是:&#xff08; B &#xff09; A.选调生属于公务员系统 B.公务员属于事业编 C.选调生有基层锻炼的要求 D…...

深入浅出深度学习基础:从感知机到全连接神经网络的核心原理与应用

文章目录 前言一、感知机 (Perceptron)1.1 基础介绍1.1.1 感知机是什么&#xff1f;1.1.2 感知机的工作原理 1.2 感知机的简单应用&#xff1a;基本逻辑门1.2.1 逻辑与 (Logic AND)1.2.2 逻辑或 (Logic OR)1.2.3 逻辑与非 (Logic NAND) 1.3 感知机的实现1.3.1 简单实现 (基于阈…...

MySQL 知识小结(一)

一、my.cnf配置详解 我们知道安装MySQL有两种方式来安装咱们的MySQL数据库&#xff0c;分别是二进制安装编译数据库或者使用三方yum来进行安装,第三方yum的安装相对于二进制压缩包的安装更快捷&#xff0c;但是文件存放起来数据比较冗余&#xff0c;用二进制能够更好管理咱们M…...

LLMs 系列实操科普(1)

写在前面&#xff1a; 本期内容我们继续 Andrej Karpathy 的《How I use LLMs》讲座内容&#xff0c;原视频时长 ~130 分钟&#xff0c;以实操演示主流的一些 LLMs 的使用&#xff0c;由于涉及到实操&#xff0c;实际上并不适合以文字整理&#xff0c;但还是决定尽量整理一份笔…...

libfmt: 现代C++的格式化工具库介绍与酷炫功能

libfmt: 现代C的格式化工具库介绍与酷炫功能 libfmt 是一个开源的C格式化库&#xff0c;提供了高效、安全的文本格式化功能&#xff0c;是C20中引入的std::format的基础实现。它比传统的printf和iostream更安全、更灵活、性能更好。 基本介绍 主要特点 类型安全&#xff1a…...

LangFlow技术架构分析

&#x1f527; LangFlow 的可视化技术栈 前端节点编辑器 底层框架&#xff1a;基于 &#xff08;一个现代化的 React 节点绘图库&#xff09; 功能&#xff1a; 拖拽式构建 LangGraph 状态机 实时连线定义节点依赖关系 可视化调试循环和分支逻辑 与 LangGraph 的深…...

HTML前端开发:JavaScript 获取元素方法详解

作为前端开发者&#xff0c;高效获取 DOM 元素是必备技能。以下是 JS 中核心的获取元素方法&#xff0c;分为两大系列&#xff1a; 一、getElementBy... 系列 传统方法&#xff0c;直接通过 DOM 接口访问&#xff0c;返回动态集合&#xff08;元素变化会实时更新&#xff09;。…...

二维FDTD算法仿真

二维FDTD算法仿真&#xff0c;并带完全匹配层&#xff0c;输入波形为高斯波、平面波 FDTD_二维/FDTD.zip , 6075 FDTD_二维/FDTD_31.m , 1029 FDTD_二维/FDTD_32.m , 2806 FDTD_二维/FDTD_33.m , 3782 FDTD_二维/FDTD_34.m , 4182 FDTD_二维/FDTD_35.m , 4793...