当前位置: 首页 > news >正文

《论文阅读》用于情绪回复生成的情绪正则化条件变分自动编码器 Affective Computing 2021

《论文阅读》用于情绪回复生成的情绪正则化条件变分自动编码器

      • 前言
      • 简介
      • 模型结构
      • 实验结果
      • 总结

前言

今天为大家带来的是《Emotion-Regularized Conditional Variational Autoencoder for Emotional Response Generation》

在这里插入图片描述


出版:IEEE Transactions on Affective Computing

时间:2021.4

类型:情感对话生成

关键词:CVAE改进

作者:Yu-Ping Ruan, and Zhen-Hua Ling

第一作者机构:National University of Defense Technology, Hefei

简介

本文提出了一种情感正则化条件变分自动编

相关文章:

《论文阅读》用于情绪回复生成的情绪正则化条件变分自动编码器 Affective Computing 2021

《论文阅读》用于情绪回复生成的情绪正则化条件变分自动编码器 前言简介模型结构实验结果总结前言 今天为大家带来的是《Emotion-Regularized Conditional Variational Autoencoder for Emotional Response Generation》 出版:IEEE Transactions on Affective Computing 时间…...

Pytorch CIFAR10图像分类 Swin Transformer篇

Pytorch CIFAR10图像分类 Swin Transformer篇 文章目录 Pytorch CIFAR10图像分类 Swin Transformer篇4. 定义网络(Swin Transformer)Swin Transformer整体架构Patch MergingW-MSASW-MSARelative position biasSwin Transformer 网络结构Patch EmbeddingP…...

【vim】常用操作

用的时候看看,记太多也没用,下面都是最常用的,更多去查文档vim指令集。 以下均为正常模式下面操作,正在编辑的,先etc一下. 1/拷贝当前行 yy,5yy为拷贝包含当前行往下五行 2/p将拷贝的东西粘贴到当前行下…...

oracle、误操作删除数据库 数据恢复。

–查询 执行 delete 的语句 ,拿到删除的时间 FIRST_LOAD_TIME ,删除行数可参考 ROWS_PROCESSED select t.FIRST_LOAD_TIME,t.ROWS_PROCESSED,t.* from v$sql t where t.sql_text like %delete from trade% ;select *from trade as of timestamp to_time…...

【Angular开发】Angular在2023年之前不是很好

做一个简单介绍,年近48 ,有20多年IT工作经历,目前在一家500强做企业架构.因为工作需要,另外也因为兴趣涉猎比较广,为了自己学习建立了三个博客,分别是【全球IT瞭望】,【架构师酒馆】…...

记录 | 报错:libssl-dev : 依赖: libssl3 (= 3.0.8-1ubuntu1.1) 但是 3.0.8-1ubuntu1.2 正要被安装

ubuntu 上安装 libssl-dev 失败的报错解决 报错: 下列软件包有未满足的依赖关系: libssl-dev : 依赖: libssl3 ( 3.0.8-1ubuntu1.1) 但是 3.0.8-1ubuntu1.2 正要被安装 E: 无法修正错误,因为您要求某些软件包保持现状,就是它们破…...

MySQL联合查询、最左匹配、范围查询导致失效

服务器版本 客户端:navicat premium16.0.11 联合索引 假设有如下表 联合索引就是同时把多列设成索引,如(empno,ename)在查询的时候就会先按照empno进行查询,再按照ename进行查询其中empno是全局有序,ename是局部有…...

部署zabbix

源码下载地址: Download Zabbix sources nginx: download 防火墙和selinux都需要关闭 1、部署监控服务器 1)安装LNMP环境 Zabbix监控管理控制台需要通过Web页面展示出来,并且还需要使用MySQL来存储数据,因此需要先为Zabbix准备基础…...

服务器感染了.locked、.locked1勒索病毒,如何确保数据文件完整恢复?

尊敬的读者: locked、.locked1勒索病毒的威胁如影随形,深刻影响着数字世界的安全。本文将深入揭示locked、.locked1的狡猾特征,为您提供实用的数据恢复方法,并分享一系列特别定制的预防措施,旨在使您的数字生活摆脱勒…...

【Linux系统化学习】命令行参数 | 环境变量的再次理解

个人主页点击直达:小白不是程序媛 Linux专栏:Linux系统化学习 代码仓库:Gitee 目录 mian函数传参获取环境变量 手动添加环境变量 导出环境变量 environ获取环境变量 本地变量和环境变量的区别 Linux的命令分类 常规命令 内建命令 …...

【STM32】TIM定时器编码器

1 编码器接口简介 Encoder Interface 编码器接口 编码器接口可接收增量(正交)编码器的信号,根据编码器旋转产生的正交信号脉冲,自动控制CNT自增或自减,从而指示编码器的位置、旋转方向和旋转速度 接收正交信号&#…...

力扣44题通配符匹配题解

44. 通配符匹配 - 力扣(LeetCode) 给你一个输入字符串 (s) 和一个字符模式 (p) ,请你实现一个支持 ? 和 * 匹配规则的通配符匹配: ? 可以匹配任何单个字符。* 可以匹配任意字符序列(包括空字符序列)。 …...

windows系统安装RocketMQ_dashboard

1.下载源码 按照官网说明下载源码 官网 官网文档 2.源码安装 2.1.① 编译rocketmq-dashboard 注释掉报错的maven插件frontend-maven-plugin、maven-antrun-plugin mvn clean package -Dmaven.test.skiptrue2.2.② 运行rocketmq-dashboard java -jar target/rocketmq-…...

ATECLOUD电源自动测试系统打破传统 助力新能源汽车电源测试

随着新能源汽车市场的逐步扩大,技术不断完善提升,新能源汽车测试变得越来越复杂,测试要求也越来越严格。作为新能源汽车的关键部件之一,电源为各个器件和整个电路提供稳定的电源,满足需求,确保新能源汽车的…...

如何教会小白使用淘宝API接口获取商品数据

随着互联网的普及,越来越多的人开始接触网络购物,而淘宝作为中国最大的电商平台之一,成为了众多消费者首选的购物平台。然而,对于一些小白用户来说,如何通过淘宝API接口获取商品数据可能是一个难题。本文将详细介绍如何…...

Redis有序集合对象

一.编码 有序集合的编码可以是ziplist或者skiplist。 ziplist编码的有序集合对象使用压缩列表作为底层实现,每一个集合元素使用紧挨在一起的两个压缩列表节点来保存。第一个节点保存元素的成员(member),而第二个元素则保存元素的分值(score)。 127.0.0.…...

【C++数据结构 | 字符串速通】10分钟秒杀字符串相关操作 | 字符串的增删改查 | 字符串与数组相互转换

字符串 by.Qin3Yu 文中所有代码默认已使用std命名空间且已导入部分头文件&#xff1a; #include <iostream> #include <string> using namespace std;概念速览 字符串是一种非常好理解的数据类型&#xff0c;它用于存储和操作文本数据。字符串可以包含任意字符…...

运动重定向:C-3PO

C-3PO: Cyclic-Three-Phase Optimization for Human-Robot Motion Retargeting based on Reinforcement Learning解析 摘要1. 简介2. 相关工作2.1 运动重定向&#xff08;Motion Retargeting&#xff09;2.2 强化学习&#xff08;Reinforcement Learning&#xff09; 3. 预备知…...

天池SQL训练营(四)-集合运算-表的加减法和join等

-天池龙珠计划SQL训练营 4.1表的加减法 4.1.1 什么是集合运算 集合在数学领域表示“各种各样的事物的总和”, 在数据库领域表示记录的集合. 具体来说,表、视图和查询的执行结果都是记录的集合, 其中的元素为表或者查询结果中的每一行。 在标准 SQL 中, 分别对检索结果使用 U…...

thinkphp lists todo

来由&#xff1a; 数据库的这个字段我想返回成&#xff1a; 新奇的写法如下&#xff1a; 逻辑层的代码&#xff1a; public function goodsDetail($goodId){$detail $this->good->where(id, $goodId)->hidden([type_params,user_id])->find();if (!$detail) {ret…...

iOS 26 携众系统重磅更新,但“苹果智能”仍与国行无缘

美国西海岸的夏天&#xff0c;再次被苹果点燃。一年一度的全球开发者大会 WWDC25 如期而至&#xff0c;这不仅是开发者的盛宴&#xff0c;更是全球数亿苹果用户翘首以盼的科技春晚。今年&#xff0c;苹果依旧为我们带来了全家桶式的系统更新&#xff0c;包括 iOS 26、iPadOS 26…...

论文解读:交大港大上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架(二)

HoST框架核心实现方法详解 - 论文深度解读(第二部分) 《Learning Humanoid Standing-up Control across Diverse Postures》 系列文章: 论文深度解读 + 算法与代码分析(二) 作者机构: 上海AI Lab, 上海交通大学, 香港大学, 浙江大学, 香港中文大学 论文主题: 人形机器人…...

黑马Mybatis

Mybatis 表现层&#xff1a;页面展示 业务层&#xff1a;逻辑处理 持久层&#xff1a;持久数据化保存 在这里插入图片描述 Mybatis快速入门 ![在这里插入图片描述](https://i-blog.csdnimg.cn/direct/6501c2109c4442118ceb6014725e48e4.png //logback.xml <?xml ver…...

Cesium1.95中高性能加载1500个点

一、基本方式&#xff1a; 图标使用.png比.svg性能要好 <template><div id"cesiumContainer"></div><div class"toolbar"><button id"resetButton">重新生成点</button><span id"countDisplay&qu…...

论文浅尝 | 基于判别指令微调生成式大语言模型的知识图谱补全方法(ISWC2024)

笔记整理&#xff1a;刘治强&#xff0c;浙江大学硕士生&#xff0c;研究方向为知识图谱表示学习&#xff0c;大语言模型 论文链接&#xff1a;http://arxiv.org/abs/2407.16127 发表会议&#xff1a;ISWC 2024 1. 动机 传统的知识图谱补全&#xff08;KGC&#xff09;模型通过…...

uniapp微信小程序视频实时流+pc端预览方案

方案类型技术实现是否免费优点缺点适用场景延迟范围开发复杂度​WebSocket图片帧​定时拍照Base64传输✅ 完全免费无需服务器 纯前端实现高延迟高流量 帧率极低个人demo测试 超低频监控500ms-2s⭐⭐​RTMP推流​TRTC/即构SDK推流❌ 付费方案 &#xff08;部分有免费额度&#x…...

c#开发AI模型对话

AI模型 前面已经介绍了一般AI模型本地部署&#xff0c;直接调用现成的模型数据。这里主要讲述讲接口集成到我们自己的程序中使用方式。 微软提供了ML.NET来开发和使用AI模型&#xff0c;但是目前国内可能使用不多&#xff0c;至少实践例子很少看见。开发训练模型就不介绍了&am…...

uniapp中使用aixos 报错

问题&#xff1a; 在uniapp中使用aixos&#xff0c;运行后报如下错误&#xff1a; AxiosError: There is no suitable adapter to dispatch the request since : - adapter xhr is not supported by the environment - adapter http is not available in the build 解决方案&…...

GitFlow 工作模式(详解)

今天再学项目的过程中遇到使用gitflow模式管理代码&#xff0c;因此进行学习并且发布关于gitflow的一些思考 Git与GitFlow模式 我们在写代码的时候通常会进行网上保存&#xff0c;无论是github还是gittee&#xff0c;都是一种基于git去保存代码的形式&#xff0c;这样保存代码…...

论文阅读笔记——Muffin: Testing Deep Learning Libraries via Neural Architecture Fuzzing

Muffin 论文 现有方法 CRADLE 和 LEMON&#xff0c;依赖模型推理阶段输出进行差分测试&#xff0c;但在训练阶段是不可行的&#xff0c;因为训练阶段直到最后才有固定输出&#xff0c;中间过程是不断变化的。API 库覆盖低&#xff0c;因为各个 API 都是在各种具体场景下使用。…...