当前位置: 首页 > news >正文

【利用二手车数据进行可视化分析】

利用二手车数据进行可视化分析

  • 查看原始数据
  • 去除重复数据
  • 需求分析
    • 1.统计全国总共有多少量二手车,用KPI图进行展示
    • 2.统计安徽总共有多少量二手车,用KPI图进行展示
    • 3.统计合肥总共有多少量二手车,用KPI图进行展示
    • 4.取最贵的10辆二手车信息,用列表图展示
    • 5.各品牌二手车数量,取Top10用饼图展示
    • 6.各品牌价格最贵的二手车
    • 7.各品牌价格最低的二手车
    • 8.各城市二手车数量,取Top10用饼图展示
    • 9.几几年款的二手车平均价格走势,取最近10年的数据用折线图展示
    • 10.统计每座城市二手车数量,并通过地图展示
  • 利用生成的表在FineBI中绘图
    • 链接数据库
    • 传入数据库中的表
    • 新建分析进行绘图

查看原始数据

查看MySQL中爬取完成的数据发现有十万多条,接下来清理一下这些数据看看有没有重复的数据将这些数据剔除
在这里插入图片描述

select car_id from car_info group by car_id

可以看到不重复的数据有七万多条,有将近三万条的重复数据,接下来就去除这些重复数据
在这里插入图片描述

去除重复数据

先查看一下重复的数据是什么样的
查看一下重复车型的car_id 有好多重复10次以上 复制一些看看这些车的信息

select car_id,count(*) cnt 
from car_info 
group by car_id
having cnt>2
order by cnt descc6a6fa03344447c1
d6d5b6c63184f41cselect * from car_info where car_id = 'c6a6fa03344447c1'

在这里插入图片描述
在这里插入图片描述
可以看到一些一样的车不止挂在一个地方而是挂在离一个城市周边的地区都会挂牌,导致重复的数据很高,现在我们根据车辆的一些信息分类然后将数据进行清洗。
按照车型,公里数,首付,总价这些车子定量不变的信息进行分类,可以看到清洗出来了8万条数据,这些数据都是不相同的,因为有些车子虽然car_id相等 但是车子的型号等信息不相等。

# 去除重复数据
select car_id,car_info,car_year,car_mile,car_price_total,car_price_pyment
from car_info 
group by car_id,car_info,car_year,car_mile,car_price_total,car_price_pyment

在这里插入图片描述
接着将清洗好的数据保存到另一张表下,避免修改源数据,

# 将清洗好的数据保存在另外一张表下 因为使用group分组 所以用max就可以很容易取到city
create table if not exists car_detail as
(select car_id,car_info,car_year,car_mile,car_price_total,car_price_pyment,max(city_name) as city,max(city_code) as city_code,max(created_at) as creat_time,max(updated_at) as update_time
from car_info 
group by car_id,car_info,car_year,car_mile,car_price_total,car_price_pyment)

在这里插入图片描述

需求分析

画图需要使用python绘图或者使用专用软件绘图
使用python绘图可以使用pyecharts
这里我使用软件fineBI绘图

1.统计全国总共有多少量二手车,用KPI图进行展示

create table if not exists ques1 as 
(select count(distinct car_id) as all_car
from car_detail)

2.统计安徽总共有多少量二手车,用KPI图进行展示

create table if not exists ques2 as 
(select count(distinct car_id) as anhui_car 
from car_detail
where city_code in ('hf','wuhu','bengbu','bozhou','hn','mas','huaibei'
,'tongling','anqing',"huangshan",'chuzhou','chizhou','fy','suzhou','la','xuancheng'))

3.统计合肥总共有多少量二手车,用KPI图进行展示

create table if not exists ques3 as 
(select count(distinct car_id) as hf_car
from car_detail
where city_code = 'hf') 

4.取最贵的10辆二手车信息,用列表图展示

create table if not exists ques4 as 
(select city,car_info,car_id,car_mile,car_price_total
from car_detail
order by car_price_total desc
limit 10)

5.各品牌二手车数量,取Top10用饼图展示

create table if not exists ques5 as
(select bend,count(*) as cont
from 
(# SUBSTRING_INDEX(str,delim,count) 类似与split的函数
select SUBSTRING_INDEX(t1.car_info,'-',1) as bend
from car_detail as t1) as tt1
group by bend
order by cont desc
limit 10)

6.各品牌价格最贵的二手车

create table if not exists ques6 as
(select bend,ROUND(max(tt1.car_price_total),2) as max_price
from (select SUBSTRING_INDEX(t1.car_info,'-',1) as bend,t1.car_price_total
from car_detail as t1) as tt1
group by tt1.bend
order by max_price desc)

7.各品牌价格最低的二手车

create table if not exists ques7 as
(select bend,ROUND(min(tt1.car_price_total),2) as min_price
from (select SUBSTRING_INDEX(t1.car_info,'-',1) as bend,t1.car_price_total
from car_detail as t1) as tt1
group by tt1.bend
order by min_price)

8.各城市二手车数量,取Top10用饼图展示

create table if not exists ques8 as
(select city,count(*) as cont
from car_detail 
group by city
order by cont desc)

9.几几年款的二手车平均价格走势,取最近10年的数据用折线图展示

create table if not exists ques9 as
(select t1.car_first_year as car_year,round(avg(t1.car_price_total),2) as price 
from 
(select year(car_year) as car_first_year,car_price_total
from car_detail) as t1
group by t1.car_first_year
order by car_year desc)

10.统计每座城市二手车数量,并通过地图展示

create table if not exists ques10 as
(select city,count(*) as car_number
from car_detail
group by city
order by car_number desc)

利用生成的表在FineBI中绘图

链接数据库

在这里插入图片描述

传入数据库中的表

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

新建分析进行绘图

在这里插入图片描述
绘图完成
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

相关文章:

【利用二手车数据进行可视化分析】

利用二手车数据进行可视化分析 查看原始数据去除重复数据需求分析1.统计全国总共有多少量二手车,用KPI图进行展示2.统计安徽总共有多少量二手车,用KPI图进行展示3.统计合肥总共有多少量二手车,用KPI图进行展示4.取最贵的10辆二手车信息&#…...

快速测试 3节点的redis sentinel集群宕机2个节点以后是否仍能正常使用

有同事问我,三个redis sentinel节点,宕机两个节点以后,是否还能够正常的通过redis sentinel正常访问redis的数据。我想了想,理论上是可以的,但是我没试过,今天有时间就测试了一下。搭建环境和测试代码的过程…...

echarts词云图echarts-wordcloud使用方法

1、echarts5.0以下的版本使用 echarts-wordcloud 1.0 的词云 1. 安装 wordCloud 1.0 依赖包npm install echarts-wordcloud12. man.js 注入import echarts-wordcloud 2、echarts5.0及以上的下载 echarts-wordcloud 2.0 版本 注意:npm install echarts-wordcloud …...

二叉树的OJ练习(二)

通过前序遍历数组构建二叉树 题目:通过前序遍历的数组(ABD##E#H##CF##G##)构建二叉树 TreeNode* TreeCreat(char* a,int* pi) {if(a[*pi] #){(*pi);return NULL; }TreeNode* root (TreeNode*)malloc(sizeof(TreeNode));if(root NULL){p…...

uni-app 微信小程序之自定义navigationBar顶部导航栏

文章目录 1. 实现效果2. App.vue3. pages.json 配置自定义4. 顶部导航栏 使用 微信小程序自定义 navigationBar 顶部导航栏,兼容适配所有机型 1. 实现效果 2. App.vue 在App.vue 中,设置获取的 StatusBar,CustomBar 高度(实现适配…...

前端入门:HTML初级指南,网页的简单实现!

代码部分&#xff1a; <!DOCTYPE html> <!-- 上方为DOCTYPE声明&#xff0c;指定文档类型为HTML --> <html lang"en"> <!-- html标签为整个页面的根元素 --> <head> <!-- title标签用于定义文档标题 --> <title>初始HT…...

低多边形3D建模石头材质纹理贴图

在线工具推荐&#xff1a; 3D数字孪生场景编辑器 - GLTF/GLB材质纹理编辑器 - 3D模型在线转换 - Three.js AI自动纹理开发包 - YOLO 虚幻合成数据生成器 - 三维模型预览图生成器 - 3D模型语义搜索引擎 当谈到游戏角色的3D模型风格时&#xff0c;有几种不同的风格&#xf…...

【华为OD题库-081】最长的元音子串长度-Java

题目 题目描述: 定义当一个字符串只有元音字母一(a,e,i,o,u,A,E,l,O,U)组成&#xff0c; 称为元音字符串&#xff0c;现给定一个字符串&#xff0c;请找出其中最长的元音字符串&#xff0c;并返回其长度&#xff0c;如果找不到请返回0&#xff0c; 字符串中任意一个连续字符组成…...

第9节:Vue3 指令

如何在UniApp中使用Vue3的指令&#xff1a; <template> <view> <!-- 使用指令 --> <text v-show"isVisible" click"toggleVisibility">点击隐藏/显示</text> <button v-on:click"incrementCount">点击…...

B028-JDBC基础

目录 什么是JDBCJDBC引入持久化JDBC规范 使用JDBC完成CRUDJDBC创建表JDBC CRUD和优化 DAO层的实现 什么是JDBC JDBC引入 Java代码操作数据库的唯一技术&#xff1a;-- JDBC ( java database connection ) 持久化 持久化(persistence)&#xff1a;把数据保存到可掉电式存储设…...

ngixn 准备

确认yum可用&#xff0c;确认防火墙&#xff0c;确认SELinux 一项安装 yum -y install gcc make automake pcre-devel zlib zlib-devel openssl openssl-devel参数&#xff1a; gcc&#xff1a;编译依赖gcc环境 pcre&#xff1a;PCRE(Perl Compatible Regular Expressions)是一…...

生活小记录

上个月项目总算上线了&#xff0c;节奏也慢慢调整正常。发现自己好久没有记录生活点滴了&#xff0c;正好写写。其实&#xff0c;最近这段日子发生的事情还是挺多的。 流感 媳妇11.24得流感&#xff0c;这件事情特别好笑&#xff0c;大晚上她和我妹妹想喝酒试试&#xff0c;结…...

Diary22-全网最全的CSS3.0讲解

CSS学习 1.认识CSS 1.1什么是CSS CSS&#xff1a;Cascading Style Sheet——层叠级联样式表 CSS&#xff1a;表现&#xff08;美化网页&#xff09; 字体&#xff1b;颜色&#xff1b;边距&#xff1b;高度&#xff1b;宽度&#xff1b;背景图片&#xff1b;网页定位&…...

LAMP和分离式LNMP部署

目录 一.什么是LAMP&#xff1f; 二.安装LAMP 先安装apache&#xff0c;httpd网页服务&#xff1a; 接着安装mysql&#xff1a; 安装php&#xff1a; 创建论坛&#xff1a; 三.安装分布式LNMP&#xff1a; 先安装nginx&#xff1a; 到另一台主机安装php&#xff1a; …...

基于Java房屋租赁管理系统

基于Java房屋租赁管理系统 功能需求 1、房源信息管理&#xff1a;系统需要能够记录和管理所有房源的详细信息&#xff0c;包括房屋地址、房屋面积、租金、付款方式、房屋类型等。管理员应该可以添加、编辑和删除房源信息。 2、租户信息管理&#xff1a;系统需要能够记录和管…...

windows安装protoc、protoc-gen-go、protoc-gen-go-grpc

文章目录 一、 protoc二、protoc-gen-go三、protoc-gen-go-grpc 一、 protoc 1&#xff0c;下载&#xff1a;https://github.com/google/protobuf/releases 下载对应的protoc&#xff0c;注意选择windows 2&#xff0c;下好之后解压就行&#xff0c;然后把bin目录加入到环境…...

macOS 获取文件夹大小

macOS 获取文件夹大小 获取文件夹大小的扩展如下&#xff1a; extension URL {var fileSize: Int? { // in bytesdo {let val try self.resourceValues(forKeys: [.totalFileAllocatedSizeKey, .fileAllocatedSizeKey])return val.totalFileAllocatedSize ?? val.fileAll…...

Ultimate VFX

Ultimate VFX 构建套件:...

一个通用游戏后台的设计模式实践总结

搞业务开发的时候,发现有一些代码的开发会让人感觉非常简便舒服,有一些代码的开发却有时候会让人感觉心智负担比较大。 逐步总结的过程中,发现让开发人员写起来感觉舒服的代码,大概率是因为当前模块与其他模块代码耦合度低,开发人员无需花费过多的精力去关注其他模块的实现…...

Kubernetes - 为什么 K8S 在容器里不能调用自己?

问题描述 最近遇到一个神奇的现象&#xff0c;在 K8S 的 POD 容器中&#xff0c;比如 pod name&#xff1a;mini-appnamespace&#xff1a;devport&#xff1a;5050 那么&#xff0c;是无法在 mini-app 容器里执行以下命令&#xff0c;如果执行&#xff0c;会一直卡在这条命…...

Linux链表操作全解析

Linux C语言链表深度解析与实战技巧 一、链表基础概念与内核链表优势1.1 为什么使用链表&#xff1f;1.2 Linux 内核链表与用户态链表的区别 二、内核链表结构与宏解析常用宏/函数 三、内核链表的优点四、用户态链表示例五、双向循环链表在内核中的实现优势5.1 插入效率5.2 安全…...

从深圳崛起的“机器之眼”:赴港乐动机器人的万亿赛道赶考路

进入2025年以来&#xff0c;尽管围绕人形机器人、具身智能等机器人赛道的质疑声不断&#xff0c;但全球市场热度依然高涨&#xff0c;入局者持续增加。 以国内市场为例&#xff0c;天眼查专业版数据显示&#xff0c;截至5月底&#xff0c;我国现存在业、存续状态的机器人相关企…...

MySQL 8.0 OCP 英文题库解析(十三)

Oracle 为庆祝 MySQL 30 周年&#xff0c;截止到 2025.07.31 之前。所有人均可以免费考取原价245美元的MySQL OCP 认证。 从今天开始&#xff0c;将英文题库免费公布出来&#xff0c;并进行解析&#xff0c;帮助大家在一个月之内轻松通过OCP认证。 本期公布试题111~120 试题1…...

JDK 17 新特性

#JDK 17 新特性 /**************** 文本块 *****************/ python/scala中早就支持&#xff0c;不稀奇 String json “”" { “name”: “Java”, “version”: 17 } “”"; /**************** Switch 语句 -> 表达式 *****************/ 挺好的&#xff…...

【开发技术】.Net使用FFmpeg视频特定帧上绘制内容

目录 一、目的 二、解决方案 2.1 什么是FFmpeg 2.2 FFmpeg主要功能 2.3 使用Xabe.FFmpeg调用FFmpeg功能 2.4 使用 FFmpeg 的 drawbox 滤镜来绘制 ROI 三、总结 一、目的 当前市场上有很多目标检测智能识别的相关算法&#xff0c;当前调用一个医疗行业的AI识别算法后返回…...

Springboot社区养老保险系统小程序

一、前言 随着我国经济迅速发展&#xff0c;人们对手机的需求越来越大&#xff0c;各种手机软件也都在被广泛应用&#xff0c;但是对于手机进行数据信息管理&#xff0c;对于手机的各种软件也是备受用户的喜爱&#xff0c;社区养老保险系统小程序被用户普遍使用&#xff0c;为方…...

GruntJS-前端自动化任务运行器从入门到实战

Grunt 完全指南&#xff1a;从入门到实战 一、Grunt 是什么&#xff1f; Grunt是一个基于 Node.js 的前端自动化任务运行器&#xff0c;主要用于自动化执行项目开发中重复性高的任务&#xff0c;例如文件压缩、代码编译、语法检查、单元测试、文件合并等。通过配置简洁的任务…...

解读《网络安全法》最新修订,把握网络安全新趋势

《网络安全法》自2017年施行以来&#xff0c;在维护网络空间安全方面发挥了重要作用。但随着网络环境的日益复杂&#xff0c;网络攻击、数据泄露等事件频发&#xff0c;现行法律已难以完全适应新的风险挑战。 2025年3月28日&#xff0c;国家网信办会同相关部门起草了《网络安全…...

用递归算法解锁「子集」问题 —— LeetCode 78题解析

文章目录 一、题目介绍二、递归思路详解&#xff1a;从决策树开始理解三、解法一&#xff1a;二叉决策树 DFS四、解法二&#xff1a;组合式回溯写法&#xff08;推荐&#xff09;五、解法对比 递归算法是编程中一种非常强大且常见的思想&#xff0c;它能够优雅地解决很多复杂的…...

跨平台商品数据接口的标准化与规范化发展路径:淘宝京东拼多多的最新实践

在电商行业蓬勃发展的当下&#xff0c;多平台运营已成为众多商家的必然选择。然而&#xff0c;不同电商平台在商品数据接口方面存在差异&#xff0c;导致商家在跨平台运营时面临诸多挑战&#xff0c;如数据对接困难、运营效率低下、用户体验不一致等。跨平台商品数据接口的标准…...