当前位置: 首页 > news >正文

李宏毅bert记录

一、自监督学习(Self-supervised Learning)

监督学习中,模型的输入为x,若期望输出是y,则在训练的时候需要给模型的期望输出y以判断其误差——有输入和输出标签才能训练监督学习的模型。

自监督学习没有标注的训练集中,把训练集分为两部分,一个作为输入,另一个作为模型的标签。自监督学习是一种无监督学习的方法。


二、Contextualized Word Embedding

 从上下文中学习word embedding,同样一个词在不同的上下文中会学到不同的word embedding

三、ELMO

 以双向RNN为基础,最初输入的词汇的token,通过学习得到embedding,中间hidden layer的就是输入词汇的embedding。图中的蓝色块是正向学到的embedding,黄色块是逆向得到的embedding,将二者接起来

如果是deep RNN,每层的embedding都留着,以不同的权重阿尔法1、阿尔法2等将每层的embedding和原始token相加得到最终的embedding

阿尔法1、阿尔法2的大小如何确定:在执行不同的下游任务时,与下游任务的参数一起训练。那么不同的下游任务训练出的阿尔法1、阿尔法2也不同

四、BERT

bert先在未标记的文本语料库上训练pre-training(自监督学习),但 它本身没有什么用,BERT 只能做填空题, 然后在少量的标记数据上做fine-tuning,把它用在其他下游的任务里面

bert pre-training两种方法(在未标记的文本语料库上训练的)

第一种方法masking input:mask掉(换成某种特殊的token [MASK])或替换15%的词 输出对该单词的预测

BERT并不知道我们遮盖住的文字,因此BERT的目标就是最小化输出 y和期望值 y ’的误差,损失函数使用交叉熵。

第二种方法next sentence prediction:同时利用第一种办法的mask 输出这两个句子是否相接

 bert fune-tuning四种例子(在有标记的数据上训练):

该部分bert参数是由 bert pre-training中参数初始化的

fune-tuning过程中linear classifier参数从头学,bert参数微调即可

1:句子分类(情感分析 输入一个句子 输出句子类别 

2. 对每个单词分类(词性标注(POS tagging)) 输入一个句子 输出每个单词类别

3.前提假设(自然语言推理(NLI)) 输入两个句子 输出该前提是否支持假设

4.回答问题(基于信息抽取的问答系统(QA))输入文章和问题 输出答案

其他内容 

What does BERT learn?

分析一下BERT每一层究竟学到了什么。假设BERT有24层,文献上的意思是,第一层是分析词性,第二层是分析语法,第三层是词汇之间的关系,以此类推。文献的做法是将每一层做weight sum,任务不同,比如词性和语法任务,那么每一层的权值也不同,根据权值来判断这一层主要是贡献什么。接近input的层就做简单的任务,而接近output的层就做困难的任务。下图右侧中蓝色的条越长,证明该层对总任务贡献更大

参考: 

李宏毅《深度学习》 - BERT_李宏毅 bert ppt_Beta Lemon的博客-CSDN博客

李宏毅机器学习--self-supervised:BERT、GPT、Auto-encoder-CSDN博客

ELMO,BERT和GPT的原理和应用总结(李宏毅视频课整理和总结)-CSDN博客 

相关文章:

李宏毅bert记录

一、自监督学习(Self-supervised Learning) 在监督学习中,模型的输入为x,若期望输出是y,则在训练的时候需要给模型的期望输出y以判断其误差——有输入和输出标签才能训练监督学习的模型。 自监督学习在没有标注的训练…...

.Net6.0 Microsoft.AspNetCore.Http.Abstractions 2.20 已弃用

您想要升级 Microsoft.AspNetCore.Http.Abstractions 包,您需要注意以下几点: Microsoft.AspNetCore.Http.Abstractions 包在 ASP.NET Core 2.2 版本后已经被标记为过时,因为它已经被包含在 Microsoft.AspNetCore.App 框架引用中12。因此&am…...

c2-C语言--指针

1.用一级指针遍历一维数组 结论 buf[i]<>*(buf i) <> *(p i)<> p[i] #include <stdio.h>int main(){int buf[5] {10,20 ,30 ,40,50}; //buf[0] --- int // buf --&buf[0] ----int *int *p buf;//&buf[0] --- &*(buf0)printf(&quo…...

kafka入门(四):消费者

消费者 (Consumer ) 消费者 订阅 Kafka 中的主题 (Topic) &#xff0c;并 拉取消息。 消费者群组&#xff08; Consumer Group&#xff09; 每一个消费者都有一个对应的 消费者群组。 一个群组里的消费者订阅的是同一个主题&#xff0c;每个消费者接收主题的一部分分区的消息…...

DFS、BFS求解leetcode图像渲染问题(Java)

目录 leetcode733题.图像渲染 DFS BFS leetcode733题.图像渲染 733. 图像渲染 - 力扣&#xff08;LeetCode&#xff09; 有一幅以 m x n 的二维整数数组表示的图画 image &#xff0c;其中 image[i][j] 表示该图画的像素值大小。 你也被给予三个整数 sr , sc 和 newColor …...

0基础学习云计算难吗?

很多人经常会问云计算是什么&#xff1f;云计算能干什么&#xff1f;学习云计算能做什么工作&#xff1f;其实我们有很多人并不知道云计算是什么&#xff0c;小知今天来给大家讲讲学习云计算能做什么。 中国的云计算行业目前正处于快速发展阶段&#xff0c;随着互联网和数字化…...

【RabbitMQ高级功能详解以及常用插件实战】

文章目录 队列1 、Classic经典队列2、Quorum仲裁队列3、Stream流式队列4、如何使用不同类型的队列 二、死信队列 队列 classic经典队列&#xff0c;Quorum仲裁队列&#xff0c;Stream流式队列 1 、Classic经典队列 这是RabbitMQ最为经典的队列类型。在单机环境中&#xff0c…...

开源的数据流技术,该选择Redpanda还是Apache Kafka?

本文将比较Apache Kafka和Redpanda两种开源的数据流技术&#xff0c;在云原生实时处理能力上的不同&#xff0c;以及如何在项目中做出选择。 目前&#xff0c;Apache Kafka不但成为了数据流处理领域事实上的标准&#xff0c;而且带动了同类产品的出现。Redpanda就是其中之一…...

720度vr虚拟家居展厅提升客户的参观兴致

VR虚拟展厅线上3D交互展示的优势有以下几点&#xff1a; 打破了场馆的展示限制&#xff0c;可展示危险性制品、珍贵稀有物品、超大型设备等&#xff0c;同时提供了更大的展示空间和更丰富的展示内容。 可提供企业真实环境的实时VR全景参观&#xff0c;提升潜在客户信任度。 提供…...

mysql中的DQL查询

表格为&#xff1a; DQL 基础查询 语法&#xff1a;select 查询列表 from 表名&#xff1a;&#xff08;查询的结果是一个虚拟表格&#xff09; -- 查询指定的列 SELECT NAME,birthday,phone FROM student -- 查询所有的列 * 所有的列&#xff0c; 查询结果是虚拟的表格&am…...

【数据结构高阶】红黑树

目录 一、红黑树的概念 二、红黑树的性质 2.1 红黑树与AVL树的比较 三、红黑树的实现 3.1 红黑树节点的定义 3.2 数据的插入 3.2.1 红黑树的调整思路 3.2.1.1 cur为红&#xff0c;f为红&#xff0c;g为黑&#xff0c;u存在且为红 3.2.1.2 cur为红&#xff0c;f为红&am…...

Unity中Batching优化的GPU实例化(1)

文章目录 前言一、GPU实例化的规则1、网格一样&#xff0c;材质一样&#xff0c;但是材质属性不一样2、单个合批最大上限为511个对象3、只有OpenGL es 3.0及以上才支持&#xff08;3.0及以上有部分硬件可能也不支持&#xff09; 二、GPU实例化的应用场景1、公开几个成员属性&am…...

vue的data

类型&#xff1a;Object | Function 限制&#xff1a;组件的定义只接受 function。 详细&#xff1a; Vue 实例的数据对象。Vue 会递归地把 data 的 property 转换为 getter/setter&#xff0c;从而让 data 的 property 能够响应数据变化。对象必须是纯粹的对象 (含有零个或多个…...

Java基础课的中下基础课04

目录 二十三、集合相关 23.1 集合 &#xff08;1&#xff09;集合的分支 23.2 List有序可重复集合 &#xff08;1&#xff09;ArrayList类 &#xff08;2&#xff09;泛型 &#xff08;3&#xff09;ArrayList常用方法 &#xff08;4&#xff09;Vector类 &#xff08;…...

解决vue ssr服务端渲染运行时报错:net::ERR_PROXY_CONNECTION_FAILED

现象&#xff1a; 从代码里找了半天也没有找到问题&#xff0c;但是由于ssr服务端渲染配置本身非常复杂&#xff0c;步骤又繁琐&#xff0c; 而且报错又很多&#xff0c;不知道哪里出了问题。 感觉是header或者cookie丢失造成的&#xff0c;因为据说ssr本身有这样的缺陷&…...

APIFox:打造高效便捷的API管理工具

随着互联网技术的不断发展&#xff0c;API&#xff08;应用程序接口&#xff09;已经成为了企业间数据交互的重要方式。然而&#xff0c;API的管理和维护却成为了开发者们面临的一大挑战。为了解决这一问题&#xff0c;APIFox应运而生&#xff0c;它是一款专为API管理而生的工具…...

半导体划片机助力氧化铝陶瓷片切割:科技与工艺的完美结合

在当今半导体制造领域&#xff0c;氧化铝陶瓷片作为一种高性能、高可靠性的材料&#xff0c;被广泛应用于各种电子设备中。而半导体划片机的出现&#xff0c;则为氧化铝陶瓷片的切割提供了新的解决方案&#xff0c;实现了科技与工艺的完美结合。 氧化铝陶瓷片是一种以氧化铝为基…...

java访问数据库的库和API概述

Java & Databases: An Overview of Libraries & APIs&#xff1a;https://www.marcobehler.com/guides/java-databases 这篇文章对JAVA访问数据库的库和API进行了一个概述&#xff0c;由低层访问数据库到通过框架访问的自然演进。每一部分都介绍了简单的概念、使用片段…...

如何实现远程公共网络下访问Windows Node.js服务端

文章目录 前言1.安装Node.js环境2.创建node.js服务3. 访问node.js 服务4.内网穿透4.1 安装配置cpolar内网穿透4.2 创建隧道映射本地端口 5.固定公网地址 前言 Node.js 是能够在服务器端运行 JavaScript 的开放源代码、跨平台运行环境。Node.js 由 OpenJS Foundation&#xff0…...

Java架构师系统架构设计服务拆分应用

目录 1 概论2 微服务应用的分层架构3 不同维度对服务进行拆分4 新零售业务的微服务拆分5 理解微服务的无状态化6 接口版本控制实现向后兼容7 可用性的保障手段-流量整形8 设计网关层限流和分布式限流9 EDA事件驱动简述10 EDA事件驱动构建的实时账务系统11 微服务的数据一致性-B…...

【网络】每天掌握一个Linux命令 - iftop

在Linux系统中&#xff0c;iftop是网络管理的得力助手&#xff0c;能实时监控网络流量、连接情况等&#xff0c;帮助排查网络异常。接下来从多方面详细介绍它。 目录 【网络】每天掌握一个Linux命令 - iftop工具概述安装方式核心功能基础用法进阶操作实战案例面试题场景生产场景…...

React Native 开发环境搭建(全平台详解)

React Native 开发环境搭建&#xff08;全平台详解&#xff09; 在开始使用 React Native 开发移动应用之前&#xff0c;正确设置开发环境是至关重要的一步。本文将为你提供一份全面的指南&#xff0c;涵盖 macOS 和 Windows 平台的配置步骤&#xff0c;如何在 Android 和 iOS…...

Docker 运行 Kafka 带 SASL 认证教程

Docker 运行 Kafka 带 SASL 认证教程 Docker 运行 Kafka 带 SASL 认证教程一、说明二、环境准备三、编写 Docker Compose 和 jaas文件docker-compose.yml代码说明&#xff1a;server_jaas.conf 四、启动服务五、验证服务六、连接kafka服务七、总结 Docker 运行 Kafka 带 SASL 认…...

是否存在路径(FIFOBB算法)

题目描述 一个具有 n 个顶点e条边的无向图&#xff0c;该图顶点的编号依次为0到n-1且不存在顶点与自身相连的边。请使用FIFOBB算法编写程序&#xff0c;确定是否存在从顶点 source到顶点 destination的路径。 输入 第一行两个整数&#xff0c;分别表示n 和 e 的值&#xff08;1…...

基于matlab策略迭代和值迭代法的动态规划

经典的基于策略迭代和值迭代法的动态规划matlab代码&#xff0c;实现机器人的最优运输 Dynamic-Programming-master/Environment.pdf , 104724 Dynamic-Programming-master/README.md , 506 Dynamic-Programming-master/generalizedPolicyIteration.m , 1970 Dynamic-Programm…...

LeetCode - 199. 二叉树的右视图

题目 199. 二叉树的右视图 - 力扣&#xff08;LeetCode&#xff09; 思路 右视图是指从树的右侧看&#xff0c;对于每一层&#xff0c;只能看到该层最右边的节点。实现思路是&#xff1a; 使用深度优先搜索(DFS)按照"根-右-左"的顺序遍历树记录每个节点的深度对于…...

【Nginx】使用 Nginx+Lua 实现基于 IP 的访问频率限制

使用 NginxLua 实现基于 IP 的访问频率限制 在高并发场景下&#xff0c;限制某个 IP 的访问频率是非常重要的&#xff0c;可以有效防止恶意攻击或错误配置导致的服务宕机。以下是一个详细的实现方案&#xff0c;使用 Nginx 和 Lua 脚本结合 Redis 来实现基于 IP 的访问频率限制…...

C++ 设计模式 《小明的奶茶加料风波》

&#x1f468;‍&#x1f393; 模式名称&#xff1a;装饰器模式&#xff08;Decorator Pattern&#xff09; &#x1f466; 小明最近上线了校园奶茶配送功能&#xff0c;业务火爆&#xff0c;大家都在加料&#xff1a; 有的同学要加波霸 &#x1f7e4;&#xff0c;有的要加椰果…...

Ubuntu系统复制(U盘-电脑硬盘)

所需环境 电脑自带硬盘&#xff1a;1块 (1T) U盘1&#xff1a;Ubuntu系统引导盘&#xff08;用于“U盘2”复制到“电脑自带硬盘”&#xff09; U盘2&#xff1a;Ubuntu系统盘&#xff08;1T&#xff0c;用于被复制&#xff09; &#xff01;&#xff01;&#xff01;建议“电脑…...

WEB3全栈开发——面试专业技能点P7前端与链上集成

一、Next.js技术栈 ✅ 概念介绍 Next.js 是一个基于 React 的 服务端渲染&#xff08;SSR&#xff09;与静态网站生成&#xff08;SSG&#xff09; 框架&#xff0c;由 Vercel 开发。它简化了构建生产级 React 应用的过程&#xff0c;并内置了很多特性&#xff1a; ✅ 文件系…...