当前位置: 首页 > news >正文

PySpark大数据处理详细教程

在这里插入图片描述
欢迎各位数据爱好者!今天,我很高兴与您分享我的最新博客,专注于探索 PySpark DataFrame 的强大功能。无论您是刚入门的数据分析师,还是寻求深入了解大数据技术的专业人士,这里都有丰富的知识和实用的技巧等着您。让我们一起潜入 PySpark 的世界,解锁数据处理和分析的无限可能!

基础操作

基础操作涵盖了数据的创建、加载、查看、选择、过滤、转换、聚合、排序、合并和导出等基本操作。

1.数据创建和加载

# 读取 CSV 文件
df = spark.read.csv("path/to/file.csv", header=True, inferSchema=True)# 读取 HIVE 表
hive_sql = f"select * from {DATABASE}.{TABLE_NAME} {CONDITION}"
df = spark.sql(hive_sql)# 读取 Parquet 文件
parquet_file = "path/to/parquet/file"
df = spark.read.parquet(parquet_file)

2.数据查看和检查

df.show(2,truncate=False)
df.printSchema()

3.查看分位数

quantiles = df.approxQuantile("salary", [0.25, 0.5, 0.75], 0)
# col:要计算分位数的列名,为字符串类型。
# probabilities:一个介于 0 和 1 之间的数字列表,表示要计算的分位数。例如,0.5 表示中位数。
# relativeError:相对误差。这是一个非负浮点数,用于控制计算精度。
# 值为 0 表示计算精确的分位数(可能非常耗时)。
# 随着该值的增加,计算速度会提高,但精度会降低。例如,如果 relativeError 为 0.01,则计算结果与真实分位数的差距在真实分位数的 1% 范围内。

4.数据选择和过滤

df.select("column1").show()
df.filter(df["column1"] > 100).show()# 或者
df.filter(F.col("column1") > 100).show()
5.数据转换和操作
df.withColumn("new_column", F.col("column1").cast("int"))).show()df.withColumn("new_column", df["column1"] + F.lit(100)).show()
df.withColumn("new_column", F.col("column1") + F.lit(100)).show()df.drop("column1").show()

6.数据聚合和分组

df.groupBy("column1").count().show()df.groupBy("column1")agg.(F.count(F.col("id"))).show()

7.排序和排名取TopN

df.orderBy(df["column1"].desc()).show()
df.orderBy(F.col("column1").desc()).show()

8.数据合并和连接

df1.join(df2, df1["column"] == df2["column"]).show()# 或者
from functools import reduce
from pyspark.sql import DataFrame
dataframes = [df1,df2,df3]
union_df = reduce(DataFrame.union, dataframes)

9.缺失值和异常值处理

df.na.fill({"column1": 0}).show()

10.数据转换和类型转换

df.withColumn("column_casted", df["column1"].cast("int")).show()

11.数据导出和写入

# 存储 DataFrame 为CSV
df.write.csv("path/to/output.csv")
# 存储 DataFrame 为HIVE
df.write.format("orc").mode("overwrite").saveAsTable(f"test.sample")
# 存储 DataFrame 为 Parquet 文件
output_path = "path/to/output/directory"
df.write.parquet(output_path)

高级操作

高级操作包括更复杂的数据处理技术、特征工程、文本处理和高级 SQL 查询。

1.数据分区和优化

df.repartition(10).write.parquet("path/to/output")

2.数据探索和分析

df.describe().show()
# 或者
df.summary().show())

3.复杂数据类型处理

from pyspark.sql.functions import explode
df.withColumn("exploded_col", explode(df["array_col"])).show()

4.特征工程

from pyspark.ml.feature import StringIndexer
indexer = StringIndexer(inputCol="category", outputCol="category_index")
df_indexed = indexer.fit(df).transform(df)

5.文本数据处理

from pyspark.ml.feature import Tokenizer
tokenizer = Tokenizer(inputCol="text", outputCol="words")
df_words = tokenizer.transform(df)

6.高级 SQL 查询

df.createOrReplaceTempView("table")
spark.sql("SELECT * FROM table WHERE column1 > 100").show()

进阶操作

进阶操作涵盖了性能调优、与其他数据源的集成和数据流处理,这些通常需要更深入的理解和经验。

1.性能调优和监控

df.explain()

2.与其他数据源集成

df_jdbc = spark.read \.format("jdbc") \.option("url", "jdbc:mysql://your-db-url") \.option("dbtable", "tablename") \.option("user", "username") \.option("password", "password") \.load()

3.数据流处理

df_stream = spark.readStream \.schema(df_schema) \.option("maxFilesPerTrigger", 1) \.json("/path/to/directory/")

4.使用 Structured Streaming

stream_query = df_stream.writeStream \.outputMode("append") \.format("console") \.start()
stream_query.awaitTermination()

这些示例提供了对 PySpark 操作的广泛了解,从基础到进阶,涵盖了数据处理和分析的多个方面。对于更复杂的场景和高级功能,强烈建议查阅 PySpark 的官方文档和相关教程。
在这里插入图片描述

相关文章:

PySpark大数据处理详细教程

欢迎各位数据爱好者!今天,我很高兴与您分享我的最新博客,专注于探索 PySpark DataFrame 的强大功能。无论您是刚入门的数据分析师,还是寻求深入了解大数据技术的专业人士,这里都有丰富的知识和实用的技巧等着您。让我们…...

三(五)ts非基础类型(对象)

在ts里面定义对象的方式也有很多。 普通定义 let obj1:{} {} // obj1.name fufu 报错,只能定义为空对象且不能修改 // 但是可以在赋初始值的时候直接添加属性,这是ts在类型推断时,它会宽容地匹配对象的结构。 let obj2:{} {name: fufu}…...

HeartBeat监控Redis状态

目录 一、概述 二、 安装部署 三、配置 四、启动服务 五、查看数据 一、概述 使用heartbeat可以实现在kibana界面对redis服务存活状态进行观察,如有必要,也可在服务宕机后立即向相关人员发送邮件通知 二、 安装部署 参照文章:HeartBeat监…...

FairGuard无缝兼容小米澎湃OS、ColorOS 14 、鸿蒙4!

随着移动互联网时代的发展,各大手机厂商为打造生态系统、构建自身的技术壁垒,纷纷投身自研操作系统。 而对于一款游戏安全产品,在不同操作系统下,是否能够无缝兼容并且提供稳定的、高强度的加密保护,成了行业的一大痛…...

【Copilot】Edge浏览器的copilot消失了怎么办

这种原因,可能是因为你的ip地址的不在这个服务的允许范围内。你需要重新使用之前出现copilot的ip地址,然后退出edge的账号,重新登录一遍,最后重启edge,就能够使得copilot侧边栏重新出现了。...

C++入门【6-C++ 修饰符类型】

C 修饰符类型 C 允许在 char、int 和 double 数据类型前放置修饰符。 修饰符是用于改变变量类型的行为的关键字,它更能满足各种情境的需求。 下面列出了数据类型修饰符: signed:表示变量可以存储负数。对于整型变量来说,signe…...

STP笔记总结

STP --- 生成树协议 STP(Spanning Tree Protocol,生成树协议)是根据 IEEE802.1D标准建立的,用于在局域网中消除数据链路层环路的协议。运行STP协议的设备通过彼此交互信息发现网络中的环路,并有选择地对某些端口进行阻…...

Qt开发 之 记一次安装 Qt5.12.12 安卓环境的失败案例

文章目录 1、安装Qt2、安卓开发的组合套件2.1、CSDN地址2.2、官网地址2.3、发现老方法不适用了 3、尝试用新方法解决3.1、先安装JDK,搞定JDK环境变量3.1.1、安装jdk3.1.2、确定jdk安装路径3.1.3、打开系统环境变量配置3.1.4、配置系统环境变量3.1.5、验证JDK环境变量…...

基于SpringBoot的就业信息管理系统设计与实现(源码+数据库+文档)

摘 要 在新冠肺炎疫情的影响下,大学生的就业问题已经变成了一个引起人们普遍重视的社会焦点问题。在这次疫情的冲击之下,大学生的就业市场的供求双方都受到了不同程度的影响,大学生的就业情况并不十分乐观。目前,各种招聘平台上…...

Java面试整理(四)Java IO流

我记得自己刚开始学Java的时候,都听过师兄的分享,说IO流是很重要,而且很难。 自己正式接触之后,其实IO流这块知识并不是特别难,而且随着IT的发展,IO流这块反而用得不是很多。特别是在应用开发这个层面,用得更少。 当然,可能会有朋友跳出来说“这怎么可能?你不懂Java吧…...

《安富莱嵌入式周报》第328期:自主微型机器人,火星探测器发射前失误故障分析,微软推出12周24期免费AI课程,炫酷3D LED点阵设计,MDK5.39发布

周报汇总地址:嵌入式周报 - uCOS & uCGUI & emWin & embOS & TouchGFX & ThreadX - 硬汉嵌入式论坛 - Powered by Discuz! 更新一期视频教程: 【实战技能】 单步运行源码分析,一期视频整明白FreeRTOS内核源码框架和运行…...

产品经理在项目周期中扮演的角色Axure的安装与基本使用

目录 一.项目周期流程 二.Axure是什么 三.Axure安装 3.1 一键式安装 3.2 汉化 3.3 授权登录 四.Axure的界面介绍及基本使用 4.1 菜单栏的使用 4.2 工具栏的使用 4.3 页面概要的使用及组件的使用 4.4 组件的样式设计 一.项目周期流程 在一般的项目周期中包含的工作内容有&…...

Dockerfile创建镜像介绍

1.介绍 Docker 提供了一种更便捷的方式&#xff0c;叫作 Dockerfile&#xff0c;docker build命令用于根据给定的Dockerfile构建Docker镜像。 docker build语法&#xff1a; # docker build [OPTIONS] <PATH | URL | -> 常用选项说明 --build-arg&#xff0c;设置构建时的…...

Android 滥用 SharedPreference 导致 ANR 问题

SharedPreference 是 Android 平台提供的一种轻量级的数据存储方式&#xff0c;它用于存储应用的配置信息或者一些简单的数据。SharedPreference 基于键值对的存储&#xff0c;并且支持基本的数据类型&#xff0c;如整型、字符串、布尔值等。它的使用非常简单方便&#xff0c;适…...

虚幻商城 道具汇总

文章目录 载具Vehicle Variety Pack(车辆品种包)Vehicle Variety Pack Volume 2(车辆品种包第 2 卷)家具Free Furniture Pack(免费家具包)Old West - VOL 1 - Interior Furniture(旧西部 - 第1卷 - 家具包)Old West VOL.3 - Travel Supplies and Goods(旧西部 - 第3卷…...

docker: Error response from daemon: failed to create shim task: OCI runtime

1 概述 在解决"Docker: Error response from daemon: failed to create shim task: OCI runtime"问题之前&#xff0c;我们先来了解一下Docker和OCI runtime的基本概念。 Docker是一个开源的应用容器引擎&#xff0c;可以帮助开发者将应用程序和其依赖打包到一个可…...

SpringBoot+线程池实现高频调用http接口并多线程解析json数据

场景 SpringbootFastJson实现解析第三方http接口json数据为实体类(时间格式化转换、字段包含中文)&#xff1a; SpringbootFastJson实现解析第三方http接口json数据为实体类(时间格式化转换、字段包含中文)-CSDN博客 Java中ExecutorService线程池的使用(Runnable和Callable多…...

java实现局域网内视频投屏播放(一)背景/需求

一 背景 我们在用电视上投屏电影或者电视剧时&#xff0c;如果没有vip&#xff0c;用盗版电影网站投屏的话会有两个问题&#xff0c;1:他们网站没有投屏功能。2:卡&#xff01;&#xff01;&#xff01;。还有就是不能随心所欲的设置自己先要自动播放的视频列表&#xff08;如…...

【Spring】手写一个简易starter

需求&#xff1a; 自定义一个starter&#xff0c;里面包含一个TimeLog注解和一个TimeLogAspect切面类&#xff0c;用于统计接口耗时。要求在其它项目引入starter依赖后&#xff0c;启动springboot项目时能进行自动装配。 步骤&#xff1a; &#xff08;1&#xff09;引入pom依赖…...

Spring Cloud Alibaba实践 --Sentinel

sentinel介绍 Sentinel的官方标题是&#xff1a;分布式系统的流量防卫兵。从名字上来看&#xff0c;很容易就能猜到它是用来作服务稳定性保障的。对于服务稳定性保障组件&#xff0c;如果熟悉Spring Cloud的用户&#xff0c;第一反应应该就是Hystrix。但是比较可惜的是Netflix…...

(LeetCode 每日一题) 3442. 奇偶频次间的最大差值 I (哈希、字符串)

题目&#xff1a;3442. 奇偶频次间的最大差值 I 思路 &#xff1a;哈希&#xff0c;时间复杂度0(n)。 用哈希表来记录每个字符串中字符的分布情况&#xff0c;哈希表这里用数组即可实现。 C版本&#xff1a; class Solution { public:int maxDifference(string s) {int a[26]…...

从零实现富文本编辑器#5-编辑器选区模型的状态结构表达

先前我们总结了浏览器选区模型的交互策略&#xff0c;并且实现了基本的选区操作&#xff0c;还调研了自绘选区的实现。那么相对的&#xff0c;我们还需要设计编辑器的选区表达&#xff0c;也可以称为模型选区。编辑器中应用变更时的操作范围&#xff0c;就是以模型选区为基准来…...

AtCoder 第409​场初级竞赛 A~E题解

A Conflict 【题目链接】 原题链接&#xff1a;A - Conflict 【考点】 枚举 【题目大意】 找到是否有两人都想要的物品。 【解析】 遍历两端字符串&#xff0c;只有在同时为 o 时输出 Yes 并结束程序&#xff0c;否则输出 No。 【难度】 GESP三级 【代码参考】 #i…...

【论文笔记】若干矿井粉尘检测算法概述

总的来说&#xff0c;传统机器学习、传统机器学习与深度学习的结合、LSTM等算法所需要的数据集来源于矿井传感器测量的粉尘浓度&#xff0c;通过建立回归模型来预测未来矿井的粉尘浓度。传统机器学习算法性能易受数据中极端值的影响。YOLO等计算机视觉算法所需要的数据集来源于…...

中医有效性探讨

文章目录 西医是如何发展到以生物化学为药理基础的现代医学&#xff1f;传统医学奠基期&#xff08;远古 - 17 世纪&#xff09;近代医学转型期&#xff08;17 世纪 - 19 世纪末&#xff09;​现代医学成熟期&#xff08;20世纪至今&#xff09; 中医的源远流长和一脉相承远古至…...

短视频矩阵系统文案创作功能开发实践,定制化开发

在短视频行业迅猛发展的当下&#xff0c;企业和个人创作者为了扩大影响力、提升传播效果&#xff0c;纷纷采用短视频矩阵运营策略&#xff0c;同时管理多个平台、多个账号的内容发布。然而&#xff0c;频繁的文案创作需求让运营者疲于应对&#xff0c;如何高效产出高质量文案成…...

Python Ovito统计金刚石结构数量

大家好,我是小马老师。 本文介绍python ovito方法统计金刚石结构的方法。 Ovito Identify diamond structure命令可以识别和统计金刚石结构,但是无法直接输出结构的变化情况。 本文使用python调用ovito包的方法,可以持续统计各步的金刚石结构,具体代码如下: from ovito…...

AirSim/Cosys-AirSim 游戏开发(四)外部固定位置监控相机

这个博客介绍了如何通过 settings.json 文件添加一个无人机外的 固定位置监控相机&#xff0c;因为在使用过程中发现 Airsim 对外部监控相机的描述模糊&#xff0c;而 Cosys-Airsim 在官方文档中没有提供外部监控相机设置&#xff0c;最后在源码示例中找到了&#xff0c;所以感…...

4. TypeScript 类型推断与类型组合

一、类型推断 (一) 什么是类型推断 TypeScript 的类型推断会根据变量、函数返回值、对象和数组的赋值和使用方式&#xff0c;自动确定它们的类型。 这一特性减少了显式类型注解的需要&#xff0c;在保持类型安全的同时简化了代码。通过分析上下文和初始值&#xff0c;TypeSc…...

redis和redission的区别

Redis 和 Redisson 是两个密切相关但又本质不同的技术&#xff0c;它们扮演着完全不同的角色&#xff1a; Redis: 内存数据库/数据结构存储 本质&#xff1a; 它是一个开源的、高性能的、基于内存的 键值存储数据库。它也可以将数据持久化到磁盘。 核心功能&#xff1a; 提供丰…...