当前位置: 首页 > news >正文

HNU计算机视觉作业一

前言

选修的是蔡mj老师的计算机视觉,上课还是不错的,但是OpenCV可能需要自己学才能完整把作业写出来。由于没有认真学,这门课最后混了80多分,所以下面作业解题过程均为自己写的,并不是标准答案,仅供参考

任务1

修改test.py的task_one()函数,对task1.jpg进行去噪处理,处理结果保存为task1_proc.jpg

提示:请观察分析task1.jpg的噪声特点,并选择合适的处理方法
请添加图片描述

def task_one():img = cv2.imread('task1.jpg')#---------your code-----------------#median = cv2.medianBlur(img, 3)#---------draw figures--------------#plt.imshow(cv2.cvtColor(median, cv2.COLOR_BGR2RGB)),plt.title('task1 output')plt.show()#---------save figures--------------#cv2.imwrite("task1_proc.jpg", median)

效果如下:
请添加图片描述

任务2

修改test.py的task_two()函数,对task2.jpg进行去噪处理,处理结果保存为task2_proc.jpg

提示:请观察分析task2.jpg的噪声特点,并选择合适的处理方法

请添加图片描述

def task_two():img = cv2.imread('task2.jpg')#---------your code-----------------#blur = cv2.bilateralFilter(img,5,50,50)#---------draw figures--------------##plt.imshow(cv2.cvtColor(blur, cv2.COLOR_BGR2RGB)),plt.title('task2 output')#plt.show()#---------save figures--------------#cv2.imwrite("task2_proc.jpg", blur)

效果如下:
请添加图片描述

任务3

修改test.py的task_three()函数,对task3.jpg进行去噪处理,处理结果保存为task3_proc.jpg

提示:task3.jpg中的噪声为y轴方向的周期噪声,周期为图像高度(height)的1/10

请添加图片描述

这个不会做,弄了半天

def task_three():#img = cv2.imread('task3.jpg',1)#---------your code-----------------## 读取图像img = cv2.imread('task3.jpg')# 分离RGB通道b, g, r = cv2.split(img)# 对每个通道进行傅里叶变换fb = np.fft.fft2(b)fg = np.fft.fft2(g)fr = np.fft.fft2(r)# 将频域中的原点移动到图像中心fb_shift = np.fft.fftshift(fb)fg_shift = np.fft.fftshift(fg)fr_shift = np.fft.fftshift(fr)# 获取频谱图像magnitude_spectrum_b = 20 * np.log(np.abs(fb_shift))magnitude_spectrum_g = 20 * np.log(np.abs(fg_shift))magnitude_spectrum_r = 20 * np.log(np.abs(fr_shift))# 获取图像高度height, width = img.shape[:2]# 计算周期噪声的频率成分dft_height = np.ceil(height / 10)cy = np.arange(dft_height, height, dft_height)cx = np.arange(width)# 将周期噪声的频率成分设置为0for y in cy:fb_shift[int(y) - 1:int(y) + 1, :] = 0fg_shift[int(y) - 1:int(y) + 1, :] = 0fr_shift[int(y) - 1:int(y) + 1, :] = 0# 进行反傅里叶变换,得到去噪后的图像ib = np.fft.ifft2(np.fft.ifftshift(fb_shift))ig = np.fft.ifft2(np.fft.ifftshift(fg_shift))ir = np.fft.ifft2(np.fft.ifftshift(fr_shift))# 将每个通道的结果合并为一张去噪后的彩色图像denoised_img = cv2.merge((ib.real, ig.real, ir.real))#---------draw figures--------------##plt.imshow(cv2.cvtColor(result, cv2.COLOR_BGR2RGB)),plt.title('task3 output')#plt.show()#---------save figures--------------#cv2.imwrite("task3_proc.jpg", denoised_img)

效果和原图没啥区别。。。
请添加图片描述

源代码:

# -*- coding: utf-8 -*-
"""
Created on Fri Mar 31 14:51:59 2023@author: cai-mj
"""import numpy as np
import cv2
from matplotlib import pyplot as pltdef task_one():img = cv2.imread('task1.jpg')#---------your code-----------------#median = cv2.medianBlur(img, 3)#---------draw figures--------------#plt.imshow(cv2.cvtColor(median, cv2.COLOR_BGR2RGB)),plt.title('task1 output')plt.show()#---------save figures--------------#cv2.imwrite("task1_proc.jpg", median)def task_two():img = cv2.imread('task2.jpg')#---------your code-----------------#blur = cv2.bilateralFilter(img,5,50,50)#---------draw figures--------------##plt.imshow(cv2.cvtColor(blur, cv2.COLOR_BGR2RGB)),plt.title('task2 output')#plt.show()#---------save figures--------------#cv2.imwrite("task2_proc.jpg", blur)def task_three():#img = cv2.imread('task3.jpg',1)#---------your code-----------------## 读取图像img = cv2.imread('task3.jpg')# 分离RGB通道b, g, r = cv2.split(img)# 对每个通道进行傅里叶变换fb = np.fft.fft2(b)fg = np.fft.fft2(g)fr = np.fft.fft2(r)# 将频域中的原点移动到图像中心fb_shift = np.fft.fftshift(fb)fg_shift = np.fft.fftshift(fg)fr_shift = np.fft.fftshift(fr)# 获取频谱图像magnitude_spectrum_b = 20 * np.log(np.abs(fb_shift))magnitude_spectrum_g = 20 * np.log(np.abs(fg_shift))magnitude_spectrum_r = 20 * np.log(np.abs(fr_shift))# 获取图像高度height, width = img.shape[:2]# 计算周期噪声的频率成分dft_height = np.ceil(height / 10)cy = np.arange(dft_height, height, dft_height)cx = np.arange(width)# 将周期噪声的频率成分设置为0for y in cy:fb_shift[int(y) - 1:int(y) + 1, :] = 0fg_shift[int(y) - 1:int(y) + 1, :] = 0fr_shift[int(y) - 1:int(y) + 1, :] = 0# 进行反傅里叶变换,得到去噪后的图像ib = np.fft.ifft2(np.fft.ifftshift(fb_shift))ig = np.fft.ifft2(np.fft.ifftshift(fg_shift))ir = np.fft.ifft2(np.fft.ifftshift(fr_shift))# 将每个通道的结果合并为一张去噪后的彩色图像denoised_img = cv2.merge((ib.real, ig.real, ir.real))#---------draw figures--------------##plt.imshow(cv2.cvtColor(result, cv2.COLOR_BGR2RGB)),plt.title('task3 output')#plt.show()#---------save figures--------------#cv2.imwrite("task3_proc.jpg", denoised_img)if __name__ == '__main__':task_one()task_two()task_three()

相关文章:

HNU计算机视觉作业一

前言 选修的是蔡mj老师的计算机视觉,上课还是不错的,但是OpenCV可能需要自己学才能完整把作业写出来。由于没有认真学,这门课最后混了80多分,所以下面作业解题过程均为自己写的,并不是标准答案,仅供参考 …...

Java:SpringBoot获取当前运行的环境activeProfile

代码示例 /*** 启动监听器*/ Component public class AppListener implements ApplicationListener<ApplicationReadyEvent> {Overridepublic void onApplicationEvent(ApplicationReadyEvent event) {// 获取当前的环境&#xff0c;如果是test&#xff0c;则直接返回Co…...

射频功率放大器的参数有哪些

射频功率放大器是射频通信系统中重要的组件&#xff0c;用于将输入的射频信号放大到需要的功率水平。在设计和选择射频功率放大器时&#xff0c;需要考虑多种参数。下面西安安泰将详细介绍射频功率放大器的常见参数。 1、P1dB功率压缩点 当放大器的输入功率比较低时&#xff0c…...

3-5、多态性

语雀原文链接 文章目录 1、多态类型2、上下转型3、instanceof 1、多态类型 编译时多态&#xff1a;方法重载 在编译阶段就已经确定要调用哪个重载的方法 运行时多态&#xff1a;方法重写 具体调用哪个子类的方法要到运行的时候&#xff0c;结果才能确定&#xff0c;多态只针对…...

什么是https 加密协议?

什么是https 加密协议&#xff1f; 加密通信的作用加密原理数字证书SSL/TLS 协议部署和使用重要性 HTTPS&#xff08;Hyper Text Transfer Protocol Secure&#xff09;是一种网络传输协议&#xff0c;它是基于HTTP协议的扩展&#xff0c;通过加密通信内容来保障数据传输的安全…...

低压无功补偿在分布式光伏现场中的应用

摘要&#xff1a;分布式光伏电站由于建设时间短、技术成熟、收益明显而发展迅速&#xff0c;但光伏并网引起用户功率因数异常的问题也逐渐凸显。针对分布式光伏电站接入配电网后功率因数降低的问题&#xff0c;本文分析了低压无功补偿装置补偿失效的原因&#xff0c;并提出了一…...

人工智能技术在宽域飞行器控制中的应用

近年来&#xff0c;以空天飞行器、高超声速飞行器等 ̈1 为典型代表的宽域飞行器蓬勃发展&#xff0c;如图1所示&#xff0c;其 不仅对高端装备制造、空间信息以及太空经济等领 域产生辐射带动作用&#xff0c;进一步提升了中国在航空航 天领域的自主创新能力&#xff0c;同时也…...

NGINX高性能服务器与关键概念解析

目录 1 NGINX简介2 NGINX的特性3 正向代理4 反向代理5 负载均衡6 动静分离7 高可用8 结语 1 NGINX简介 NGINX&#xff08;“engine x”&#xff09;在网络服务器和代理服务器领域备受推崇。作为一款高性能的 HTTP 和反向代理服务器&#xff0c;它以轻量级、高并发处理能力以及…...

云ssrf

https://book.hacktricks.xyz/pentesting-web/ssrf-server-side-request-forgery/cloud-ssrf SSRF -> EC2 Metadata API -> IAM临时Security Token -> AWS SSM -> RCESSRF -> EC2 Metadata API -> IAM临时Security Token -> AWS Lambda -> RCESSRF -&g…...

面试题目总结(三)

1. Spring、Springboot、springMVC、Spring Cloud 的区别&#xff1a; Spring&#xff1a;Spring 是一个开源的、轻量级的Java框架&#xff0c;提供了丰富的功能和组件&#xff0c;用于构建企业级应用程序。Spring框架包含了很多模块&#xff0c;包括核心容器、数据访问、事物…...

Kubernetes入门笔记——(2)k8s设计文档

​k8s最初源自谷歌的Brog项目&#xff0c;架构与其类似&#xff0c;主要包括etcd、api server、controller manager、scheduler、kubelet和kube-proxy等组件 etcd&#xff1a;分布式存储&#xff0c;保存k8s集群的状态 api server&#xff1a;资源操作的唯一入口&#xff0c;…...

LoadBalancer将服务暴露到外部实现负载均衡metallb-layer2模式配置介绍

目录 一.metallb简介 1.支持多种负载均衡协议 2.支持自定义 IP 地址范围 3.无需额外的硬件设备 4.易于安装和配置 5.可扩展性强 6.layer2模式下选举的leader节点压力大 二.layer2模式配置演示 1.开启ipvs并开启严格ARP模式 2.下载并应用metallb 3.创建一个 IPAddres…...

【pytest】单元测试文件的写法

前言 可怜的宾馆&#xff0c;可怜得像被12月的冷雨淋湿的一条三只腿的黑狗。——《舞舞舞》 \;\\\;\\\; 目录 前言test_1或s_test格式非测试文件pytest.fixture()装饰器pytestselenium test_1或s_test格式 要么 test_前缀 在前&#xff0c;要么 _test后缀 在后&#xff01; …...

arcgis for js 添加自定义叠加图片到地图坐标点上

在使用arcgis for js开发地图绘制图层时&#xff0c;可以通过相关api实现添加图标到某个坐标点&#xff0c;那么如果现在有一个需要添加一个小图叠大图的需求&#xff0c;又或者是自定义绘制图标&#xff0c;如何实现&#xff1f; 1、简单地绘制一个图标到底图图层上面 const…...

记录 | linux下互换键盘的Ctrl和CapsLock键

互换ctrl和CapsLK setxkbmap -option "ctrl:swapcaps"打开设置文件&#xff1a; sudo vim /etc/default/keyboard将其中的XKBOPTIONS中添加ctrl:swapcaps即可&#xff0c;如下所示&#xff1a; # KEYBOARD CONFIGURATION FILE# Consult the keyboard(5) manual pa…...

【公网远程手机Android服务器】安卓Termux搭建Web服务器

&#x1f3a5; 个人主页&#xff1a;深鱼~&#x1f525;收录专栏&#xff1a;cpolar&#x1f304;欢迎 &#x1f44d;点赞✍评论⭐收藏 目录 概述 1.搭建apache 2.安装cpolar内网穿透 3.公网访问配置 4.固定公网地址 5.添加站点 概述 Termux是一个Android终端仿真应用程…...

【银行测试】金融项目+测试方法范围分析,功能/接口/性能/安全...

目录&#xff1a;导读 前言一、Python编程入门到精通二、接口自动化项目实战三、Web自动化项目实战四、App自动化项目实战五、一线大厂简历六、测试开发DevOps体系七、常用自动化测试工具八、JMeter性能测试九、总结&#xff08;尾部小惊喜&#xff09; 前言 1、金融行业软件特…...

Java网络编程——安全网络通信

在网络上&#xff0c;信息在由源主机到目标主机的传输过程中会经过其他计算机。在一般情况下&#xff0c;中间的计算机不会监听路过的信息。但在使用网上银行或者进行信用卡交易时&#xff0c;网络上的信息有可能被非法分子监听&#xff0c;从而导致个人隐私的泄露。由于Intern…...

云原生数据库是什么?它的作用是啥?

目前来说&#xff0c;各厂商的云原生数据库在演进路线上分成了两个略有不同的路径来解决不同的问题。 一种是各大公有云厂商选择的&#xff0c;优先保证上云兼容性的路线&#xff0c;就是基于存算分离架构对传统数据库进行改造的路线&#xff1a;通过把大量的日志操作放到后台…...

使用ansible批量初始化服务器

简介 本文详细介绍ansible怎么批量初始化服务器&#xff0c;包括ansible批量初始化服务器详细配置和步骤&#xff0c;有需要的小伙伴们可以参考借鉴&#xff0c;希望对大家有所帮助。 详细步骤 1、ansible要初始化的主机 [rootnginx ansible]# tail -3 /etc/ansible/hosts …...

多模态2025:技术路线“神仙打架”,视频生成冲上云霄

文&#xff5c;魏琳华 编&#xff5c;王一粟 一场大会&#xff0c;聚集了中国多模态大模型的“半壁江山”。 智源大会2025为期两天的论坛中&#xff0c;汇集了学界、创业公司和大厂等三方的热门选手&#xff0c;关于多模态的集中讨论达到了前所未有的热度。其中&#xff0c;…...

PHP和Node.js哪个更爽?

先说结论&#xff0c;rust完胜。 php&#xff1a;laravel&#xff0c;swoole&#xff0c;webman&#xff0c;最开始在苏宁的时候写了几年php&#xff0c;当时觉得php真的是世界上最好的语言&#xff0c;因为当初活在舒适圈里&#xff0c;不愿意跳出来&#xff0c;就好比当初活在…...

23-Oracle 23 ai 区块链表(Blockchain Table)

小伙伴有没有在金融强合规的领域中遇见&#xff0c;必须要保持数据不可变&#xff0c;管理员都无法修改和留痕的要求。比如医疗的电子病历中&#xff0c;影像检查检验结果不可篡改行的&#xff0c;药品追溯过程中数据只可插入无法删除的特性需求&#xff1b;登录日志、修改日志…...

2025 后端自学UNIAPP【项目实战:旅游项目】6、我的收藏页面

代码框架视图 1、先添加一个获取收藏景点的列表请求 【在文件my_api.js文件中添加】 // 引入公共的请求封装 import http from ./my_http.js// 登录接口&#xff08;适配服务端返回 Token&#xff09; export const login async (code, avatar) > {const res await http…...

自然语言处理——循环神经网络

自然语言处理——循环神经网络 循环神经网络应用到基于机器学习的自然语言处理任务序列到类别同步的序列到序列模式异步的序列到序列模式 参数学习和长程依赖问题基于门控的循环神经网络门控循环单元&#xff08;GRU&#xff09;长短期记忆神经网络&#xff08;LSTM&#xff09…...

根据万维钢·精英日课6的内容,使用AI(2025)可以参考以下方法:

根据万维钢精英日课6的内容&#xff0c;使用AI&#xff08;2025&#xff09;可以参考以下方法&#xff1a; 四个洞见 模型已经比人聪明&#xff1a;以ChatGPT o3为代表的AI非常强大&#xff0c;能运用高级理论解释道理、引用最新学术论文&#xff0c;生成对顶尖科学家都有用的…...

Java毕业设计:WML信息查询与后端信息发布系统开发

JAVAWML信息查询与后端信息发布系统实现 一、系统概述 本系统基于Java和WML(无线标记语言)技术开发&#xff0c;实现了移动设备上的信息查询与后端信息发布功能。系统采用B/S架构&#xff0c;服务器端使用Java Servlet处理请求&#xff0c;数据库采用MySQL存储信息&#xff0…...

从 GreenPlum 到镜舟数据库:杭银消费金融湖仓一体转型实践

作者&#xff1a;吴岐诗&#xff0c;杭银消费金融大数据应用开发工程师 本文整理自杭银消费金融大数据应用开发工程师在StarRocks Summit Asia 2024的分享 引言&#xff1a;融合数据湖与数仓的创新之路 在数字金融时代&#xff0c;数据已成为金融机构的核心竞争力。杭银消费金…...

Scrapy-Redis分布式爬虫架构的可扩展性与容错性增强:基于微服务与容器化的解决方案

在大数据时代&#xff0c;海量数据的采集与处理成为企业和研究机构获取信息的关键环节。Scrapy-Redis作为一种经典的分布式爬虫架构&#xff0c;在处理大规模数据抓取任务时展现出强大的能力。然而&#xff0c;随着业务规模的不断扩大和数据抓取需求的日益复杂&#xff0c;传统…...

游戏开发中常见的战斗数值英文缩写对照表

游戏开发中常见的战斗数值英文缩写对照表 基础属性&#xff08;Basic Attributes&#xff09; 缩写英文全称中文释义常见使用场景HPHit Points / Health Points生命值角色生存状态MPMana Points / Magic Points魔法值技能释放资源SPStamina Points体力值动作消耗资源APAction…...