基于OpenCV+CNN+IOT+微信小程序智能果实采摘指导系统——深度学习算法应用(含python、JS工程源码)+数据集+模型(二)
目录
- 前言
- 总体设计
- 系统整体结构图
- 系统流程图
- 运行环境
- Python环境
- TensorFlow 环境
- Jupyter Notebook环境
- Pycharm 环境
- 微信开发者工具
- OneNET云平台
- 相关其它博客
- 工程源代码下载
- 其它资料下载

前言
本项目基于Keras框架,引入CNN进行模型训练,采用Dropout梯度下降算法,按比例丢弃部分神经元,同时利用IOT及微信小程序实现自动化远程监测果实成熟度以及移动端实时监测的功能,为果农提供采摘指导,有利于节约劳动力,提高生产效率,提升经济效益。
本项目基于Keras框架,采用卷积神经网络(CNN)进行模型训练。通过引入Dropout梯度下降算法,实现了对神经元的按比例丢弃,以提高模型的鲁棒性和泛化性能。同时,利用物联网(IoT)技术和微信小程序,项目实现了自动化远程监测果实成熟度,并在移动端实时监测果园状态的功能。这为果农提供了采摘的实时指导,有助于节约劳动力、提高生产效率,从而提升果园经济效益。
首先,项目采用Keras框架构建了一个卷积神经网络,利用深度学习技术对果实成熟度进行准确的识别和预测。
其次,引入Dropout梯度下降算法,通过随机丢弃神经元的方式,防止模型过拟合,提高了对新数据的泛化能力。
接着,项目整合了物联网技术,通过传感器等设备对果园中的果实进行远程监测。这样,果农可以在不同地点远程了解果实的成熟度状况。
同时,通过微信小程序,果农可以实时监测果园状态,了解果实成熟度、采摘时机等信息,从而更加科学地安排采摘工作。
总体来说,该项目不仅在模型训练上引入了先进的深度学习技术,还通过物联网和微信小程序实现了智能化的果园管理系统,为果农提供了更加便捷、高效的农业生产解决方案。
总体设计
本部分包括系统整体结构图和系统流程图。
系统整体结构图
系统整体结构如图所示。

系统流程图
模型训练流程如图所示。

数据上传流程如图所示。

小程序流程如图所示。

运行环境
本部分包括Python环境、TensorFlow环境、JupyterNotebook环境、PyCharm环境、微信开发者工具和OneNET云平台。
Python环境
详见博客。
TensorFlow 环境
详见博客。
Jupyter Notebook环境
详见博客。
Pycharm 环境
详见博客。
微信开发者工具
关于微信开发者工具的使用教程,参考用户手册地址如下:
https://developers.weixin.qq.com/miniprogram/dev/devtools/devtools.html。
AppID、小程序账号申请地址为:
https://mp.weixin.qq.com/wxopen/waregister?action=step1。
OneNET云平台
OneNET云平台是中国移动基于物联网技术和产业特点打造的开放平台和生态环境,适配各种网络环境和协议类型,支持各类传感器和智能硬件的快速接入和大数据服务,提供丰富的API和应用模板以支持各类行业应用和智能硬件的开发,能够有效降低物联网应用开发和部署成本,满足物联网领域设备连接、协议适配、数据存储、数据安全、大数据分析等平台级服务需求。
具体开发文档可参考:https://open.iot.10086.cn/doc/v5/fuse/detail/Iot_platform
OneNET云平台下载地址为:https://open.iot.10086.cn/。注册账号后,可进入开发者中心新建、管理产品。该平台提供多种服务,用户可根据需求选择新建不同类型的产品。本项目使用多协议接入服务,选择HTTP协议。创建产品后,平台会自动分配产品ID、Master-APIKey等信息。其中,Master-APIKey具有最高权限,能够访问产品中的所有设备和数据,查看时需要验证身份,如图所示。

使用平台进行数据的存储和传输,需要在产品中添加设备,可在"设备列表"中进行添加,如图所示。

添加设备后,平台会自动分配设备ID、APIKey等信息,可在设备详情中查看,外部将通过这些信息访问平台上的数据。当APIKey权限不足时,替换为Master-APIKey,如图所示。

同一设备能够上传多个数据流,具体信息在展示页中管理和查看,平台会记录每条数据流的全部历史数据。如果是数值数据,会自动绘制变化曲线图,如图所示。

相关其它博客
基于OpenCV+CNN+IOT+微信小程序智能果实采摘指导系统——深度学习算法应用(含python、JS工程源码)+数据集+模型(一)
基于OpenCV+CNN+IOT+微信小程序智能果实采摘指导系统——深度学习算法应用(含python、JS工程源码)+数据集+模型(三)
基于OpenCV+CNN+IOT+微信小程序智能果实采摘指导系统——深度学习算法应用(含python、JS工程源码)+数据集+模型(四)
基于OpenCV+CNN+IOT+微信小程序智能果实采摘指导系统——深度学习算法应用(含python、JS工程源码)+数据集+模型(五)
工程源代码下载
详见本人博客资源下载页
其它资料下载
如果大家想继续了解人工智能相关学习路线和知识体系,欢迎大家翻阅我的另外一篇博客《重磅 | 完备的人工智能AI 学习——基础知识学习路线,所有资料免关注免套路直接网盘下载》
这篇博客参考了Github知名开源平台,AI技术平台以及相关领域专家:Datawhale,ApacheCN,AI有道和黄海广博士等约有近100G相关资料,希望能帮助到所有小伙伴们。
相关文章:
基于OpenCV+CNN+IOT+微信小程序智能果实采摘指导系统——深度学习算法应用(含python、JS工程源码)+数据集+模型(二)
目录 前言总体设计系统整体结构图系统流程图 运行环境Python环境TensorFlow 环境Jupyter Notebook环境Pycharm 环境微信开发者工具OneNET云平台 相关其它博客工程源代码下载其它资料下载 前言 本项目基于Keras框架,引入CNN进行模型训练,采用Dropout梯度…...
*上位机的定义
上位机是指在分布式控制系统中,负责监控和控制下位机(也称为远程终端设备)的计算机或者计算机网络。它通常是一个高性能的计算设备,运行着特定的监控软件,用于实时监测、控制和管理下位机设备。 上位机负责与各个下位…...
架构LAMP
目录 1.什么是LAMP 2.LAMP组成及作用 3.搭建Apache httpd服务 4.编译安装mysqld 服务 5.编译安装PHP 解析环境 6.安装论坛 1.什么是LAMP LAMP架构是目前成熟的企业网站应用模式之一,指的是协同工作的一整套系统和相关软件,能够提供动态Web站点服务…...
vue实现浏览器不同分辨率下的不同样式,css的媒体查询与js判断当前浏览器宽度
前言: 实现实现浏览器不同分辨率下的不同样式的方法很多,这里整理两种,1个是css的媒体查询来实现,另一个是js判断当前浏览器的宽度,然后动态给他添加不同的class名,或者动态用style修改样式,添加…...
CentOS7 安装包 MariaDB 10.4.x
CentOS7 安装包 MariaDB 10.4.x 统一 MariaDB安装包 https://www.alipan.com/s/fvLg3gN7LPX 提取码: nh81 打开「阿里云盘」...
js中箭头函数简单介绍
1.箭头函数是 ES6 中新增的一种函数定义方式, 简单举例为 var nameA function(a){return a} 可以用箭头函数简化为 var nameA a >a; 返回的是你输入的值 比如 nameA(5) 返回的就是5 nameA(2) 返回的就是2 以上两个表达的含义是一样的。nameA为名字 2.…...
分布式ID服务实践
背景 分布式场景下需要一个全局 ID 来标识唯一性,比如在单数据库时通过表唯一主键即可实现唯一 ID,分库分表时就需要全局唯一 ID。 业务对唯一 ID 的要求如下: 全局唯一性 不能出现重复的 ID 号,既然是唯一标识,这…...
YOLOv8改进 | 2023主干篇 | 利用RT-DETR特征提取网络PPHGNetV2改进YOLOv8(超级轻量化精度更高)
一、本文介绍 本文给大家带来利用RT-DETR模型主干HGNet去替换YOLOv8的主干,RT-DETR是今年由百度推出的第一款实时的ViT模型,其在实时检测的领域上号称是打败了YOLO系列,其利用两个主干一个是HGNet一个是ResNet,其中HGNet就是我们…...
C现代方法(第26章)笔记——<stdarg.h>、<stdlib.h>和<time.h>标准库
文章目录 第26章 <stdarg.h>、<stdlib.h>和<time.h>标准库26.1 <stdarg.h>: 可变参数26.1.1 调用带有可变参数列表的函数26.1.2 v...printf函数26.1.3 v...scanf函数(C99) 26.2 <stdlib.h>: 通用的实用工具26.2.1 数值转换函数26.2.1.1 测试数值…...
CCKS2023-面向金融领域的主体事件检测-亚军方案分享
赛题分析 大赛地址 https://tianchi.aliyun.com/competition/entrance/532098/introduction?spma2c22.12281925.0.0.52b97137bpVnmh 任务描述 主体事件检测是语言文本分析和金融领域智能应用的重要任务之一,如在金融风控领域往往会对公司主体进行风险事件的检测…...
Linux下通过find找文件---通过修改时间查找(-mtime)
通过man手册查找和-mtime选项相关的内容 man find | grep -A 3 mtime # 这里简单介绍了 -mtime ,还有一个简单的示例-mtime n Files data was last modified n*24 hours ago. See the comments for -atime to understand how rounding affects the interpretati…...
图文教程:stable-diffusion的基本使用教程 txt2img(多图)
之前我介绍了SD的安装过程,那么这篇将介绍怎么使用SD 使用模型 SD安装好之后,我们只有一个默认的模型。这个模型很难满足我们的绘图需求,那么有2种方法。 1是自己训练一个模型(有门槛)2是去网站上找一个别人练好的模…...
VisualSVN Server的安装全过程
目录 背景: 安装过程: 步骤1: 步骤2: 步骤3: 步骤4: 步骤5: 安装出现的bug: 问题: 解决办法: 总结: 背景: VisualSVN Server 是一款免费的 SVN (Subversion) 服务器软件,…...
Python 进阶(十六):二进制和ASCII码的转换(binascii 模块)
大家好,我是水滴~~ 本文详细介绍了Python中的binascii模块及其使用方法。通过binascii模块,我们可以方便地进行二进制和ASCII字符串之间的转换操作。文章中包含大量的示例代码,希望能够帮助新手同学快速入门。 《Python入门核心技术》专栏总…...
CSS Grid布局入门:从零开始创建一个网格系统
CSS Grid布局入门:从零开始创建一个网格系统 引言 在响应式设计日益重要的今天,CSS Grid布局系统是前端开发中的一次革新。它使得创建复杂、灵活的布局变得简单而直观。本教程将通过分步骤的方式,让你从零开始掌握CSS Grid,并在…...
java--Collection的遍历方式
1.迭代器概述 迭代器是用来遍历集合的专用方式(数组没有迭代器),在java中迭代器是Iterator。 2.Collection集合获取迭代器的方法 3.Iterator迭代器中的常用方法 4.增强for循环 ①增强for可以用来遍历集合或数组。 ②增强for遍历集合,本质就是迭代器遍…...
现代雷达车载应用——第2章 汽车雷达系统原理 2.2节
经典著作,值得一读,英文原版下载链接【免费】ModernRadarforAutomotiveApplications资源-CSDN文库。 2.2 汽车雷达架构 从顶层来看,基本的汽车雷达由发射器,接收器和天线组成。图2.2给出了一种简化的单通道连续波雷达结构[2]。这…...
Ajax跨域请求
最近使用js构造请求时发生了CORS跨域问题,mark一下 ajax跨域,这应该是最全的解决方案了 | Dailc的个人主页Everything about dailchttps://dailc.github.io/2017/03/22/ajaxCrossDomainSolution.htmlAJAX - 廖雪峰的官方网站研究互联网产品和技术&#…...
python 中Windows编程一些心得
主要思路 当我们显示所有消息的信息时,我们可以知道Windows后台是如何传递消息给我们,但是并不会把所有东西写进开发文档 ,这有一定的原因 但是 我们要自己去理解或者猜想开发者思路或者根据反馈结果来分析消息的作用,不然永远只…...
android 13.0 系统属性控制音量键功能是否可用开关(屏蔽音量加减功能)
1.概述 在13.0的系统定制化开发中,要求屏蔽掉音量+ 音量-的功能,根据系统属性来判断是否响应音量加减的功能,在系统上层中是由PhoneWindowManage来管理音量键的功能, 所以就要看是PhoneWindowManage.java中怎么处理的音量键的功能 首选看的源码关于音量键的处理 2.系统属…...
IDEA运行Tomcat出现乱码问题解决汇总
最近正值期末周,有很多同学在写期末Java web作业时,运行tomcat出现乱码问题,经过多次解决与研究,我做了如下整理: 原因: IDEA本身编码与tomcat的编码与Windows编码不同导致,Windows 系统控制台…...
【入坑系列】TiDB 强制索引在不同库下不生效问题
文章目录 背景SQL 优化情况线上SQL运行情况分析怀疑1:执行计划绑定问题?尝试:SHOW WARNINGS 查看警告探索 TiDB 的 USE_INDEX 写法Hint 不生效问题排查解决参考背景 项目中使用 TiDB 数据库,并对 SQL 进行优化了,添加了强制索引。 UAT 环境已经生效,但 PROD 环境强制索…...
Java如何权衡是使用无序的数组还是有序的数组
在 Java 中,选择有序数组还是无序数组取决于具体场景的性能需求与操作特点。以下是关键权衡因素及决策指南: ⚖️ 核心权衡维度 维度有序数组无序数组查询性能二分查找 O(log n) ✅线性扫描 O(n) ❌插入/删除需移位维护顺序 O(n) ❌直接操作尾部 O(1) ✅内存开销与无序数组相…...
AtCoder 第409场初级竞赛 A~E题解
A Conflict 【题目链接】 原题链接:A - Conflict 【考点】 枚举 【题目大意】 找到是否有两人都想要的物品。 【解析】 遍历两端字符串,只有在同时为 o 时输出 Yes 并结束程序,否则输出 No。 【难度】 GESP三级 【代码参考】 #i…...
1.3 VSCode安装与环境配置
进入网址Visual Studio Code - Code Editing. Redefined下载.deb文件,然后打开终端,进入下载文件夹,键入命令 sudo dpkg -i code_1.100.3-1748872405_amd64.deb 在终端键入命令code即启动vscode 需要安装插件列表 1.Chinese简化 2.ros …...
tree 树组件大数据卡顿问题优化
问题背景 项目中有用到树组件用来做文件目录,但是由于这个树组件的节点越来越多,导致页面在滚动这个树组件的时候浏览器就很容易卡死。这种问题基本上都是因为dom节点太多,导致的浏览器卡顿,这里很明显就需要用到虚拟列表的技术&…...
回溯算法学习
一、电话号码的字母组合 import java.util.ArrayList; import java.util.List;import javax.management.loading.PrivateClassLoader;public class letterCombinations {private static final String[] KEYPAD {"", //0"", //1"abc", //2"…...
Java编程之桥接模式
定义 桥接模式(Bridge Pattern)属于结构型设计模式,它的核心意图是将抽象部分与实现部分分离,使它们可以独立地变化。这种模式通过组合关系来替代继承关系,从而降低了抽象和实现这两个可变维度之间的耦合度。 用例子…...
Python 训练营打卡 Day 47
注意力热力图可视化 在day 46代码的基础上,对比不同卷积层热力图可视化的结果 import torch import torch.nn as nn import torch.optim as optim from torchvision import datasets, transforms from torch.utils.data import DataLoader import matplotlib.pypl…...
jdbc查询mysql数据库时,出现id顺序错误的情况
我在repository中的查询语句如下所示,即传入一个List<intager>的数据,返回这些id的问题列表。但是由于数据库查询时ID列表的顺序与预期不一致,会导致返回的id是从小到大排列的,但我不希望这样。 Query("SELECT NEW com…...
