记录一次chatGPT人机协同实战辅助科研——根据词库自动进行情感分析
有一个Excel中的一列,读取文本判断文本包含积极情感词.txt和消极情感词.txt的个数,分别生成两列统计数据
请将 ‘your_file.xlsx’ 替换为你的Excel文件名,'Your Text Column’替换为包含文本的列名。
这个程序首先读取了积极和消极情感词,并定义了两个函数来统计文本中这些词的数量。然后,它使用这两个函数来创建新的列,并将结果保存为一个新的Excel文件。
# -*- coding:utf-8 -*-f
import pandas as pd# 读入数据# 读取Excel文件
file_path = 'chatGPT_analyse_result.xlsx'
df = pd.read_excel(file_path)# 定义函数来统计文本中出现的词汇数
def count_words(text, word_list):count = 0for word in word_list:if word in text:count += 1return count# 读取积极和消极情绪词文件
positive_words_path = '积极情绪词库.txt' # 请替换为你的积极情绪词文件路径
negative_words_path = '消极情绪词库.txt' # 请替换为你的消极情绪词文件路径# 读取积极和消极情绪词文件内容到列表中
with open(positive_words_path, 'r', encoding='utf-8') as file:positive_words = [line.strip() for line in file]with open(negative_words_path, 'r', encoding='utf-8') as file:negative_words = [line.strip() for line in file]# 对每一行文本进行积极和消极情绪词的统计
positive_counts = []
negative_counts = []for text in df['分析结果']:positive_count = count_words(str(text), positive_words)negative_count = count_words(str(text), negative_words)positive_counts.append(positive_count)negative_counts.append(negative_count)# 将统计结果添加到数据框中
df['积极情绪词个数'] = positive_counts
df['消极情绪词个数'] = negative_counts# 将结果保存到新的Excel文件中
output_file_path = '分析结果.xlsx'
df.to_excel(output_file_path, index=False)print("已生成带有情绪词统计的Excel文件。")
发现次数都是0

调整prompt

还是不匹配 ,接续追问

成功解决bug:出现了分析结果

最后代码:
# -*- coding:utf-8 -*-f
import pandas as pd
import jieba
# 读入数据# 读取Excel文件
file_path = 'chatGPT_analyse_result.xlsx'
df = pd.read_excel(file_path)# 情绪词列表
positive_words = ['透露', '亲切', '容忍', '听从', '被动', '创新', '发表', '好的', '鼓舞', '赋予', '喜欢', '配合', '聪明', '偏向', '交流', '合理', '猜测', '夸奖', '致力于', '称赞', '不错', '听懂', '安慰', '善于', '爱', '提升', '坚持', '看好', '指引', '劝慰', '舒缓', '减轻', '推导', '愉快', '轻松', '沟通', '有序', '进步', '谢谢', '强烈', '懂', '恰当', '持之以恒', '至关重要', '振奋', '赞成', '妥当', '礼貌', '温暖', '有利于']negative_words = ['批评', '不对', '抱歉', '薄弱', '不适', '不足', '谴责', '逼迫', '厌烦', '不行', '指责', '负面', '惩罚', '紧张', '责备', '告诫', '挫败', '气馁', '紧迫', '质疑', '不满', '贬低', '忽视', '批判', '疑惑', '反对', '不是', '失败', '催促', '担心', '无礼', '失去', '焦虑', '着急', '退步', '模糊', '放弃', '迷惘', '灰心丧气', '批判性', '禁止', '不当', '犯错', '忽略', '拒绝', '担忧', '不专业', '困难']# 分词函数
def tokenize(text):return jieba.lcut(text)# 对每一行文本进行分词和积极、消极情绪词的统计
positive_counts = []
negative_counts = []for text in df['分析结果']:words = tokenize(str(text)) # 分词positive_count = any(word in positive_words for word in words)negative_count = any(word in negative_words for word in words)positive_counts.append(1 if positive_count else 0)negative_counts.append(1 if negative_count else 0)# 将统计结果添加到数据框中
df['积极情绪词个数'] = positive_counts
df['消极情绪词个数'] = negative_counts# 将结果保存到新的Excel文件中
output_file_path = '分析结果.xlsx'
df.to_excel(output_file_path, index=False)print("已生成带有情绪词统计的Excel文件。")
最后在画个图
转换成分钟

import pandas as pd# 读取Excel文件
file_path = 'chatGPT_analyse_result.xlsx' # 请替换为你的Excel文件路径
df = pd.read_excel(file_path)# 提取时间列中的分钟和秒钟数据
time_pattern = r'(\d+):(\d+)'
df['分钟'] = df['时间'].str.extract(time_pattern)[0].astype(int) * 60 # 提取分钟并转换为秒钟
df['秒钟'] = df['时间'].str.extract(time_pattern)[1].astype(int)# 计算总的秒钟数
df['总秒钟数'] = df['分钟'] + df['秒钟']# 将总秒钟数转换回分钟
df['总分钟数'] = df['总秒钟数'] / 60# 打印结果或保存到新的Excel文件中
print(df[['分钟', '秒钟', '总秒钟数', '总分钟数']]) # 打印结果
# 或者保存到新的Excel文件中
output_file_path = '处理后的结果.xlsx'df.to_excel(output_file_path, index=False)
print('ok')


import pandas as pd
import matplotlib.pyplot as plt
plt.rcParams['font.sans-serif']=['SimHei']
plt.rcParams['axes.unicode_minus']=False# 读取Excel文件
file_path = '分析结果.xlsx' # 请替换为你的Excel文件路径
df = pd.read_excel(file_path)# 映射积极情绪词个数和消极情绪词个数到1和-1
df['积极情绪映射'] = df['积极情绪词个数'].apply(lambda x: 1)
df['消极情绪映射'] = df['消极情绪词个数'].apply(lambda x: -1)# 绘制折线图
plt.figure(figsize=(10, 6)) # 设置图形大小# 以总分钟数为 x 轴,积极情绪映射和消极情绪映射为 y 轴绘制折线图
plt.plot(df['总分钟数'], df['积极情绪映射'], label='积极情绪词个数', marker='o') # marker='o' 表示使用圆点标记数据点
plt.plot(df['总分钟数'], df['消极情绪映射'], label='消极情绪词个数', marker='x') # marker='x' 表示使用X标记数据点plt.xlabel('总分钟数') # x 轴标签
plt.ylabel('情绪') # y 轴标签
plt.title('课堂时间与情绪变化折线图') # 图表标题plt.legend() # 显示图例
plt.grid(True) # 显示网格线plt.ylim(-1.5, 1.5) # 设置 y 轴显示范围plt.tight_layout() # 调整布局使标签等不会被裁剪
plt.show() # 显示图形
结果如图:

相关文章:
记录一次chatGPT人机协同实战辅助科研——根据词库自动进行情感分析
有一个Excel中的一列,读取文本判断文本包含积极情感词.txt和消极情感词.txt的个数,分别生成两列统计数据 请将 ‘your_file.xlsx’ 替换为你的Excel文件名,Your Text Column’替换为包含文本的列名。 这个程序首先读取了积极和消极情感词&…...
Java_LinkedList链表详解
目录 前言 ArrayList的缺陷 链表 链表的概念及结构 链表的种类 1.单向或双向 2.带头或不带头 3.循环或不循环 LinkedList的使用 什么是LinkedList LinkedList的使用 LinkedList的构造 LinkedList的其他常用方法介绍 LinkedList的遍历 ArrayList和LinkedList的…...
MacOS 12 开放指定端口 指定ip访问
MacOS 12 开放指定端口 指定ip访问 在 macOS 上开放一个端口,并指定只能特定的 IP 访问,你可以使用 macOS 内置的 pfctl(Packet Filter)工具来实现。 以下是一些基本的步骤: 1、 编辑 pf 配置文件: 打开 /…...
LeedCode刷题---滑动窗口问题
顾得泉:个人主页 个人专栏:《Linux操作系统》 《C/C》 《LeedCode刷题》 键盘敲烂,年薪百万! 一、长度最小的子数组 题目链接:长度最小的子数组 题目描述 给定一个含有 n 个正整数的数组和一个正整数 target 。…...
leetcode24. 两两交换链表中的节点
题目描述 给你一个链表,两两交换其中相邻的节点,并返回交换后链表的头节点。你必须在不修改节点内部的值的情况下完成本题(即,只能进行节点交换)。 示例 1: 输入:head [1,2,3,4] 输出&#…...
TCP传输层详解(计算机网络复习)
介绍:TCP/IP包含了一系列的协议,也叫TCP/IP协议族,简称TCP/IP。该协议族提供了点对点的连接机制,并将传输数据帧的封装、寻址、传输、路由以及接收方式都予以标准化 TCP/IP的分层模型 在讲TCP/IP协议之前,首先介绍一…...
【LuatOS】简单案例网页点灯
材料 硬件:合宙ESP32C3简约版,BH1750光照度模块,0.96寸OLED(4P_IIC),杜邦线若干 接线: ESP32C3.GND — OLED.GND — BH1750.GND ESP32C3.3.3V — OLED.VCC — BH1750.VCC ESP32C3.GPIO5 — OLED.SCL — BH1750.SCL E…...
百度APP iOS端包体积50M优化实践(七)编译器优化
一. 前言 百度APP iOS端包体积优化系列文章的前六篇重点介绍了包体积优化整体方案、图片优化、资源优化、代码优化、无用类优化、HEIC图片优化实践和无用方法清理,图片优化是从无用图片、Asset Catalog和HEIC格式三个角度做深度优化;资源优化包括大资源…...
STM32-新建工程(标准库)
目录 STM32F10x新建工程(标准库) 移植文件夹 新建工程 添加启动文件和必需文件 在工程中加载新添加的文件 在工程中添加文件路径 在工程中添加main函数 添加lib库 添加必需文件 添加宏定义 点亮LED(标准库) STM32F10x新…...
Android集成科大讯飞语音识别与语音唤醒简易封装
目录 一、语音唤醒部分 1、首先在科大讯飞官网注册开发者账号 2、配置唤醒词然后下载sdk 3、选择对应功能下载 4、语音唤醒lib包全部复制到工程目录下 5、把语音唤醒词文件复制到工程的assets目录 6、复制对应权限到AndroidManifest.xml中 7、唤醒工具类封装 二、语音识…...
【Linux】telnet命令使用
telnet命令 telnet命令用于使用telnet协议与另一台主机进行通信。如果在没有主机参数的情况下调用telnet,它将进入命令模式,由其提示(telnet>)指示。在这种模式下,它接受并执行下面列出的命令。如果使用参数调用它…...
VCG 标记使用(BitFlags)
文章目录 一、简介二、实现代码三、实现效果参考资料一、简介 对于网格的每个单形,我们都有一个称为BitFlags的组件,该组件存储固定大小的32位向量,用于各种需求。管理这些标志的相关类:vcg::tri::UpdateFlags与vcg::tri::UpdateSelection。主要的标记有:删除标记、边界标记…...
Pandas中的Series(第1讲)
Pandas中的Series(第1讲) 🍹博主 侯小啾 感谢您的支持与信赖。☀️ 🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔…...
从手工测试进阶中高级测试?如何突破职业瓶颈...
目录:导读 前言一、Python编程入门到精通二、接口自动化项目实战三、Web自动化项目实战四、App自动化项目实战五、一线大厂简历六、测试开发DevOps体系七、常用自动化测试工具八、JMeter性能测试九、总结(尾部小惊喜) 前言 1、手工测试如何进…...
【链表Linked List】力扣-114 二叉树展开为链表
目录 题目描述 解题过程 官方题解 题目描述 给你二叉树的根结点 root ,请你将它展开为一个单链表: 展开后的单链表应该同样使用 TreeNode ,其中 right 子指针指向链表中下一个结点,而左子指针始终为 null 。展开后的单链表应…...
Go (一) 基础部分4 -- 文件处理
一、文件基本介绍 1.1、打开一个文件 基本介绍:打开一个文件用于读取,如果操作成功,返回的文件对象的方法可用于读取文件数据。如果出错,错误底层类型是"*.PathError" func Open(name string) (*File, error) name stri…...
集合03 Collection (List) - Java
List ArrayListArrayList注意事项ArrayList底层操作机制-源码分析(重点) VectorVector基本介绍 ——Vector和ArrayList比较Vector底层结构和源码分析 LinkedList基本介绍LinkedList的底层结构和操作机制LinkedList的增删改查 ——LinkedList和ArrayList比…...
国产化软件突围!怿星科技eStation产品荣获2023铃轩奖“前瞻优秀奖”
11月11日,2023中国汽车供应链峰会暨第八届铃轩奖颁奖典礼在江苏省昆山市举行。怿星科技凭借eStation产品,荣获2023铃轩奖“前瞻智能座舱类优秀奖”,怿星CEO潘凯受邀出席铃轩奖晚会并代表领奖。 2023铃轩奖“前瞻智能座舱类优秀奖” 铃轩奖&a…...
如何解决Redis热Key问题?
Redis热点key是指访问频率较高的key,当大量的请求集中在一个或少数几个热点key上时,会导致这些key所在的Redis节点的CPU、内存和网络带宽等资源被大量消耗,影响Redis集群的整体性能和稳定性。 热点Key带来的问题 Redis节点负载过高࿱…...
react Hooks之useId
当我们在编写React组件时,有时需要为元素生成唯一的ID。这种情况经常出现在表单元素、标签和用于无障碍性的目的上。React提供了一个名为useId的自定义Hook,它可以帮助我们生成唯一的ID。 1、作用: 用于生成一个唯一的 ID。这个 ID 可以用于…...
网络六边形受到攻击
大家读完觉得有帮助记得关注和点赞!!! 抽象 现代智能交通系统 (ITS) 的一个关键要求是能够以安全、可靠和匿名的方式从互联车辆和移动设备收集地理参考数据。Nexagon 协议建立在 IETF 定位器/ID 分离协议 (…...
使用VSCode开发Django指南
使用VSCode开发Django指南 一、概述 Django 是一个高级 Python 框架,专为快速、安全和可扩展的 Web 开发而设计。Django 包含对 URL 路由、页面模板和数据处理的丰富支持。 本文将创建一个简单的 Django 应用,其中包含三个使用通用基本模板的页面。在此…...
Leetcode 3576. Transform Array to All Equal Elements
Leetcode 3576. Transform Array to All Equal Elements 1. 解题思路2. 代码实现 题目链接:3576. Transform Array to All Equal Elements 1. 解题思路 这一题思路上就是分别考察一下是否能将其转化为全1或者全-1数组即可。 至于每一种情况是否可以达到…...
Vue3 + Element Plus + TypeScript中el-transfer穿梭框组件使用详解及示例
使用详解 Element Plus 的 el-transfer 组件是一个强大的穿梭框组件,常用于在两个集合之间进行数据转移,如权限分配、数据选择等场景。下面我将详细介绍其用法并提供一个完整示例。 核心特性与用法 基本属性 v-model:绑定右侧列表的值&…...
unix/linux,sudo,其发展历程详细时间线、由来、历史背景
sudo 的诞生和演化,本身就是一部 Unix/Linux 系统管理哲学变迁的微缩史。来,让我们拨开时间的迷雾,一同探寻 sudo 那波澜壮阔(也颇为实用主义)的发展历程。 历史背景:su的时代与困境 ( 20 世纪 70 年代 - 80 年代初) 在 sudo 出现之前,Unix 系统管理员和需要特权操作的…...
ardupilot 开发环境eclipse 中import 缺少C++
目录 文章目录 目录摘要1.修复过程摘要 本节主要解决ardupilot 开发环境eclipse 中import 缺少C++,无法导入ardupilot代码,会引起查看不方便的问题。如下图所示 1.修复过程 0.安装ubuntu 软件中自带的eclipse 1.打开eclipse—Help—install new software 2.在 Work with中…...
JDK 17 新特性
#JDK 17 新特性 /**************** 文本块 *****************/ python/scala中早就支持,不稀奇 String json “”" { “name”: “Java”, “version”: 17 } “”"; /**************** Switch 语句 -> 表达式 *****************/ 挺好的ÿ…...
QT: `long long` 类型转换为 `QString` 2025.6.5
在 Qt 中,将 long long 类型转换为 QString 可以通过以下两种常用方法实现: 方法 1:使用 QString::number() 直接调用 QString 的静态方法 number(),将数值转换为字符串: long long value 1234567890123456789LL; …...
python执行测试用例,allure报乱码且未成功生成报告
allure执行测试用例时显示乱码:‘allure’ �����ڲ����ⲿ���Ҳ���ǿ�&am…...
iOS性能调优实战:借助克魔(KeyMob)与常用工具深度洞察App瓶颈
在日常iOS开发过程中,性能问题往往是最令人头疼的一类Bug。尤其是在App上线前的压测阶段或是处理用户反馈的高发期,开发者往往需要面对卡顿、崩溃、能耗异常、日志混乱等一系列问题。这些问题表面上看似偶发,但背后往往隐藏着系统资源调度不当…...
