使用 Python 实现简单的爬虫框架
爬虫是一种自动获取网页内容的程序,它可以帮助我们从网络上快速收集大量信息。在本文中,我们将学习如何使用 Python 编写一个简单的爬虫框架。
一、请求网页
首先,我们需要请求网页内容。我们可以使用 Python 的 requests 库来发送 HTTP 请求。在使用之前,请确保已安装该库:
pip install requests
然后,我们可以使用以下代码请求网页内容:
import requestsurl = "https://example.com"
response = requests.get(url)if response.status_code == 200:print(response.text)
else:print("请求失败")
二、解析 HTML
接下来,我们需要解析 HTML 以提取所需的数据。BeautifulSoup 是一个非常流行的 HTML 解析库,我们可以使用它来简化解析过程。首先安装库:
pip install beautifulsoup4
然后,我们可以使用以下代码解析 HTML:
from bs4 import BeautifulSouphtml = response.text
soup = BeautifulSoup(html, 'html.parser')# 提取网页标题
title = soup.title.string
print("网页标题:", title)
三、构建爬虫框架
现在我们已经掌握了请求网页和解析 HTML 的基本知识,我们可以开始构建爬虫框架。首先,我们需要定义一个函数来处理每个网页:
def process_page(url):# 请求网页response = requests.get(url)if response.status_code == 200:# 解析 HTMLsoup = BeautifulSoup(response.text, 'html.parser')# 处理网页数据process_data(soup)else:print("请求失败")
接下来,我们需要编写 process_data 函数来处理网页数据:
def process_data(soup):# 提取并处理所需数据pass
最后,我们可以使用以下代码开始爬虫:
start_url = "https://example.com"
process_page(start_url)
至此,我们已经构建了一个简单的爬虫框架。您可以根据需要扩展 process_data 函数以处理特定的网页数据。此外,您还可以考虑使用多线程、代理服务器等技术来提高爬虫的性能和效率。
如果你对Python感兴趣,想要学习python,这里给大家分享一份Python全套学习资料,都是我自己学习时整理的,希望可以帮到你,一起加油!
😝有需要的小伙伴,可以点击下方链接免费领取或者V扫描下方二维码免费领取🆓
Python全套学习资料

1️⃣零基础入门
① 学习路线
对于从来没有接触过Python的同学,我们帮你准备了详细的学习成长路线图。可以说是最科学最系统的学习路线,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。

② 路线对应学习视频
还有很多适合0基础入门的学习视频,有了这些视频,轻轻松松上手Python~

③练习题
每节视频课后,都有对应的练习题哦,可以检验学习成果哈哈!

2️⃣国内外Python书籍、文档
① 文档和书籍资料

3️⃣Python工具包+项目源码合集
①Python工具包
学习Python常用的开发软件都在这里了!每个都有详细的安装教程,保证你可以安装成功哦!

②Python实战案例
光学理论是没用的,要学会跟着一起敲代码,动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。100+实战案例源码等你来拿!

③Python小游戏源码
如果觉得上面的实战案例有点枯燥,可以试试自己用Python编写小游戏,让你的学习过程中增添一点趣味!

4️⃣Python面试题
我们学会了Python之后,有了技能就可以出去找工作啦!下面这些面试题是都来自阿里、腾讯、字节等一线互联网大厂,并且有阿里大佬给出了权威的解答,刷完这一套面试资料相信大家都能找到满意的工作。


5️⃣Python兼职渠道
而且学会Python以后,还可以在各大兼职平台接单赚钱,各种兼职渠道+兼职注意事项+如何和客户沟通,我都整理成文档了。

上述所有资料 ⚡️ ,朋友们如果有需要的,可以扫描下方👇👇👇二维码免费领取🆓

相关文章:
使用 Python 实现简单的爬虫框架
爬虫是一种自动获取网页内容的程序,它可以帮助我们从网络上快速收集大量信息。在本文中,我们将学习如何使用 Python 编写一个简单的爬虫框架。 一、请求网页 首先,我们需要请求网页内容。我们可以使用 Python 的 requests 库来发送 HTTP 请…...
Activiti七大接口,28张表详解
Activiti七大接口,28张表详解 7大接口 RepositoryService:提供管理流程部署和流程定义API。 RuntimeService:提供运行时流程实例进行管理与控制API。 TaskService:提供流程任务管理API。 IdentityService:提供对流程…...
解决msvcr120.dll文件丢失问题
项目场景: 在VMware虚拟机中安装win7家庭版系统,安装MySQL数据库,部署项目文件。 问题描述 安装MySQL数据库过程中提示“msvcr120.dll文件丢失”。 原因分析: 提示丢失msvcr120.dll文件,我们首先要到C:\Windows\Sys…...
AI日报:人工智能与新材料的发现
文章目录 总览人工智能正在革命性地发现新的或更强的材料,这将改变制造业。更坚韧的合金问题研究解决方案 新材料人工智能存在的挑战方法探索 日本的研究人员正在使用人工智能制造更强的金属合金或发现新材料,并彻底改变制造过程 总览 日本的研究人员开…...
鱼fish数据集VOC+yolo-1400张(labelImg标注)
鱼类,是最古老的脊椎动物。易蓄积重金属。 部分不同染色体数目的杂交的后代依然有生育能力。它们几乎栖居于地球上所有的水生环境,从淡水的湖泊、河流到咸水的大海和大洋。 今天要介绍鱼的数据集。 数据集名称:鱼 fish 数据集格式…...
爬虫解析-BeautifulSoup-bs4(七)
目录 1.bs4的安装 2.bs4的语法 (1)查找节点 (2)查找结点信息 3.bs4的操作 (1)对本地文件进行操作 (2)对服务器响应文件进行操作 4.实战 beautifulsoup:和lxml一样…...
分类预测 | Matlab实现OOA-SVM鱼鹰算法优化支持向量机的多变量输入数据分类预测
分类预测 | Matlab实现OOA-SVM鱼鹰算法优化支持向量机的多变量输入数据分类预测 目录 分类预测 | Matlab实现OOA-SVM鱼鹰算法优化支持向量机的多变量输入数据分类预测分类效果基本描述程序设计参考资料 分类效果 基本描述 1.Matlab实现OOA-SVM鱼鹰算法优化支持向量机的多变量输…...
2.vue学习笔记(目录结构+模板语法+属性绑定)
文章目录 1.目录结构2.模板语法2.1.文本插值2.2.使用JavaScript表达式2.3.原始HTML 3.属性绑定3.1.简写3.2.布尔型Attribute3.3.动态绑定多个值 1.目录结构 1.vscode ——VSCode工具的配置文件夹 2.node_modules ——Vue项目的运行依赖文件夹 3.public ——资源文件夹&am…...
Python基本语法及高级特性总结
1. Python基本语法 1.1 变量和数据类型 在Python中,变量不需要预先声明,可以直接赋值。Python是一种动态类型语言,变量的类型会根据赋值的对象自动确定。例如: a 10 # a是整数类型变量 b 3.14 # b是浮点数类型变量 c …...
03-详解网关的过滤器工厂和常见的网关过滤器路由过滤器,默认过滤器,全局过滤器的执行顺序
过滤器工厂 过滤器种类 GatewayFilter是网关中提供的一种过滤器,可以对进入网关的请求和微服务响应的结果做加工处理 Spring提供了31中不同的路由过滤器工厂 AddResponseHeader表示给请求添加响应头 default-filters: # 默认过滤器 - AddResponseHeaderX-Response-Default-R…...
基于SSM的小儿肺炎知识管理系统设计与实现
末尾获取源码 开发语言:Java Java开发工具:JDK1.8 后端框架:SSM 前端:Vue 数据库:MySQL5.7和Navicat管理工具结合 服务器:Tomcat8.5 开发软件:IDEA / Eclipse 是否Maven项目:是 目录…...
HuffMan tree
定义 给定N个权值作为N个叶子结点,构造一棵二叉树,若该树的带权路径长度达到最小,称这样的二叉树为最优二叉树,也称为哈夫曼树(Huffman Tree)。哈夫曼树是带权路径长度最短的树,权值较大的结点离根较近。 基础知识 路…...
各地加速“双碳”落地,数字能源供应商怎么选?
作者 | 曾响铃 文 | 响铃说 随着我国力争2030年前实现“碳达峰”、2060年前实现“碳中和”的“双碳”目标提出,为各地区、各行业的低碳转型和绿色可持续发展制定“倒计时”时间表,一场围绕“数字能源”、“智慧能源”、“新能源”等关键词的创新探索进…...
19.java绘图
A.Graphics类 Graphics类是java.awt包中的一个类,它用于在图形用户界面(GUI)或其他图形应用程序中进行绘制。该类通常与Component的paint方法一起使用,以在组件上进行绘制操作。 一些Graphics类的常见用法和方法: 在组…...
提升工作效率,尽在Microsoft Office LTSC 2021 for Mac!
在当今的办公环境中,高效率的工作是每个人都追求的目标。作为全球领先的办公软件套装,Microsoft Office LTSC 2021 for Mac将为您提供一站式的解决方案,帮助您轻松应对各种工作任务。 首先,Microsoft Office LTSC 2021 for Mac拥…...
day24_java的反射机制
反射 一、反射的概念 反射:加载类,反射出类的各个组成部分(类的成员:构造方法,属性,方法) java反射机制:在运行状态中,对于任何一个类都能够知道这个类的所有属性和方…...
VUE学习二、创建一个前端项目
1.创建一个vue项目 使用命令 vue ui启动vue脚手架 vue ui 等待项目创建好 可以来任务栏启动项目 参数那里可以设置启动端口等参数 启动成功 成功访问 2. 用webstorm 打开项目 脚手架页面可安装基本依赖 比如路由 使用ws打开项目 启动项目 npm run serve 3.修改启动…...
「红队笔记」靶机精讲:Prime1 - 信息收集和分析能力的试炼
「红队笔记」靶机精讲:Prime1 - 信息收集和分析能力的试炼 本文是作者在观看 B 站《红队笔记》后做的一些笔记及相关知识的补充。学渗透特别推荐大家去看。如有侵权,请联系作者,作者看到后会第一时间删除。 靶机精讲之Prime1,vu…...
JVM虚拟机系统性学习-对象的创建流程及对象的访问定位
对象的创建流程与内存分配 对象创建流程如下: Java 中新创建的对象如何分配空间呢? new 的对象先放 Eden 区(如果是大对象,直接放入老年代)当 Eden 区满了之后,程序还需要创建对象,则垃圾回收…...
perf与火焰图-性能分析工具
参考链接 perf性能分析工具使用分享 如何读懂火焰图?-阮一峰 perf基本用法-record,report-知乎 火焰图抓取 准备: centos安装perf工具 dnf install perf下载火焰图解析代码 git clone https://github.com/brendangregg/FlameGraph.git抓取指定进程…...
UE5 学习系列(二)用户操作界面及介绍
这篇博客是 UE5 学习系列博客的第二篇,在第一篇的基础上展开这篇内容。博客参考的 B 站视频资料和第一篇的链接如下: 【Note】:如果你已经完成安装等操作,可以只执行第一篇博客中 2. 新建一个空白游戏项目 章节操作,重…...
零门槛NAS搭建:WinNAS如何让普通电脑秒变私有云?
一、核心优势:专为Windows用户设计的极简NAS WinNAS由深圳耘想存储科技开发,是一款收费低廉但功能全面的Windows NAS工具,主打“无学习成本部署” 。与其他NAS软件相比,其优势在于: 无需硬件改造:将任意W…...
day52 ResNet18 CBAM
在深度学习的旅程中,我们不断探索如何提升模型的性能。今天,我将分享我在 ResNet18 模型中插入 CBAM(Convolutional Block Attention Module)模块,并采用分阶段微调策略的实践过程。通过这个过程,我不仅提升…...
Oracle查询表空间大小
1 查询数据库中所有的表空间以及表空间所占空间的大小 SELECTtablespace_name,sum( bytes ) / 1024 / 1024 FROMdba_data_files GROUP BYtablespace_name; 2 Oracle查询表空间大小及每个表所占空间的大小 SELECTtablespace_name,file_id,file_name,round( bytes / ( 1024 …...
前端倒计时误差!
提示:记录工作中遇到的需求及解决办法 文章目录 前言一、误差从何而来?二、五大解决方案1. 动态校准法(基础版)2. Web Worker 计时3. 服务器时间同步4. Performance API 高精度计时5. 页面可见性API优化三、生产环境最佳实践四、终极解决方案架构前言 前几天听说公司某个项…...
Auto-Coder使用GPT-4o完成:在用TabPFN这个模型构建一个预测未来3天涨跌的分类任务
通过akshare库,获取股票数据,并生成TabPFN这个模型 可以识别、处理的格式,写一个完整的预处理示例,并构建一个预测未来 3 天股价涨跌的分类任务 用TabPFN这个模型构建一个预测未来 3 天股价涨跌的分类任务,进行预测并输…...
Spring Boot面试题精选汇总
🤟致敬读者 🟩感谢阅读🟦笑口常开🟪生日快乐⬛早点睡觉 📘博主相关 🟧博主信息🟨博客首页🟫专栏推荐🟥活动信息 文章目录 Spring Boot面试题精选汇总⚙️ **一、核心概…...
Python如何给视频添加音频和字幕
在Python中,给视频添加音频和字幕可以使用电影文件处理库MoviePy和字幕处理库Subtitles。下面将详细介绍如何使用这些库来实现视频的音频和字幕添加,包括必要的代码示例和详细解释。 环境准备 在开始之前,需要安装以下Python库:…...
dify打造数据可视化图表
一、概述 在日常工作和学习中,我们经常需要和数据打交道。无论是分析报告、项目展示,还是简单的数据洞察,一个清晰直观的图表,往往能胜过千言万语。 一款能让数据可视化变得超级简单的 MCP Server,由蚂蚁集团 AntV 团队…...
html css js网页制作成品——HTML+CSS榴莲商城网页设计(4页)附源码
目录 一、👨🎓网站题目 二、✍️网站描述 三、📚网站介绍 四、🌐网站效果 五、🪓 代码实现 🧱HTML 六、🥇 如何让学习不再盲目 七、🎁更多干货 一、👨…...
