当前位置: 首页 > news >正文

CESM笔记——component活动状态+compset前缀解析+B1850,BHIST区别

时隔一年没写CSDN笔记了,一些CESM的知识点我都快忘了。诶,主要是在国外办公室的网屏蔽了好多国内的网络,CSDN登不上,回家又不想干活。。。好吧,好多借口。。。

昨天师弟问我一些问题,想想要不可以水一篇小笔记。刚好下周开AGU,这会儿在酒店闲着。废话太多,下面进入正题。


component活动状态:

一般来说,component有四种活动状态:active, data, dead, stub;

active:可以理解成dynamical,如果一个component状态为active,则表示它是fully progonostic(全预测的),就大概可以理解成是完全动态演化的。

data:由于active的运行比较昂贵,所以在一些情况下比如模式测试,spin up, 发展参数化等,就可以用data状态,该状态表示一些驱动数据是存好的,可以理解成静态驱动场。

dead:看名字就知道,基本不怎么用,其存在只是为了支持技术系统测试。死组件必须全部一起运行,并且不应与任何active或data状态组合。

stub:当模型配置不需要某些组件时,可以使用stub“存根”组件,其存在只是为了满足接口要求(例如,使用大气数据强制的活动陆地组件不需要ice、ocn或glc组件,因此使用ice、ocn和glc存根 ),和data不一样,data状态还是有读入数据的,只不过是静态的。

CESM2 Configurations (CESM2.2) — CESM CESM2.2 documentation (escomp.github.io)

compset的前缀字母:

compset最常见的前缀可能就是B、F,但是可能很多人跑了很久模式都还是不知道这是什么意思。

B一般代表all active,就是所有的component都是全动力过程运行的。

F则是大气和陆地组件是活动的,海洋和海冰是data的。

其他的参考下图:

图源:CESM2 Configurations (Upcoming/Beta Version) — CESM Upcoming/Beta Version documentation (escomp.github.io)

Initial time解析:

B1850和BHIST区别:

还是先供上这张图给大家先回顾一下compset的命名规则

我们看到time这里会出现的比较常见的几种有1850, Hist, 2000; compset的官方介绍这里写的是initialization time,那么问题来了,什么是initialization time呢?

CESM论坛上面有个比较不错的解释

how to set the Initialization Time in CESM | DiscussCESM Forums (ucar.edu)

稍微再给大家解释一下:

1850的强迫保持在工业化前水平,2000的强迫保持在near present day水平ya,hist的强迫则是随时间演化的,可以理解为近真实情景的强迫的时间演变。所以如果使用B1850,和BHIST使用相同的初始时间RUN_STARTDATE,两个case的演化也是非常不同的。

相关文章:

CESM笔记——component活动状态+compset前缀解析+B1850,BHIST区别

时隔一年没写CSDN笔记了,一些CESM的知识点我都快忘了。诶,主要是在国外办公室的网屏蔽了好多国内的网络,CSDN登不上,回家又不想干活。。。好吧,好多借口。。。 昨天师弟问我一些问题,想想要不可以水一篇小…...

vue 页面跳转时,浏览器上方显示进度条

vue 页面跳转时,浏览器上方显示进度条 文章目录 vue 页面跳转时,浏览器上方显示进度条先看效果一、安装 nprogress二、main.js 引入nprogress1.引入库 三、在router.js中对路由钩子进行设置四、测试 先看效果 vue 页面跳转时,浏览器上方显示进…...

tqdm输出字符串被截断

tqdm输出截断 1.遇到的问题2.tqdm默认的字符串长度是80(ncols属性)3.修改tqdm的ncols属性4.本人字符串长度是64 1.遇到的问题 字符串打印,显示不完整, 2.tqdm默认的字符串长度是80(ncols属性) 3.修改tqdm的…...

Qt::UniqueConnection和lambda一块用无效

如果槽函数是lambda。 那么用了Qt::UniqueConnection也会出现槽函数被多次调用的问题。 原因: 参考官方文档: QObject Class | Qt Core 5.15.16https://doc.qt.io/qt-5/qobject.html#connect...

四川技能大赛——2023年四川网信人才技能大赛(网络安全管理员赛项)决赛

四川技能大赛——2023年四川网信人才技能大赛(网络安全管理员赛项)决赛 文章目录 四川技能大赛——2023年四川网信人才技能大赛(网络安全管理员赛项)决赛C1-比64少的bas - DONEC2-affine - DONEC3-简单的RSA - DONEM1-不要动我的f…...

死锁(面试常问)

1.什么是死锁 简单来说就是一个线程加锁后解锁不了 一个线程,一把锁,线程连续加锁两次。如果这个锁是不可重入锁,会死锁。两个线程,两把锁。 举几个例子,1.钥匙锁车里了,车钥匙锁家里了。2. 现在有一本书…...

GO设计模式——3、抽象工厂模式(创建型)

目录 抽象工厂模式(Abstract Factory Pattern) 抽象工厂模式的核心角色 优缺点 代码实现 抽象工厂模式(Abstract Factory Pattern) 抽象工厂模式(Abstract Factory Pattern)是围绕一个超级工厂创建其他…...

AUTOSAR_PRS_LogAndTraceProtocol文档翻译

1简介和概述 本协议规范规定了AUTOSAR协议Dlt的格式、消息序列和语义。 该协议允许将诊断、日志和跟踪信息发送到通信总线上。 因此,Dlt模块从应用程序或其他软件模块收集调试信息,向调试信息添加元数据,并将其发送到通信总线。 此外&#x…...

自定义比较器

package org.jeecg.modules.develop.api.livePort; import java.util.ArrayList; import java.util.Collections; import java.util.Comparator; import java.util.List; // 创建一个泛型类 class MyObject { private T data; public MyObject(T data) {this.data data; }p…...

【NLP】如何管理大型语言模型 (LLM)

什么是LLM编排? LLM 编排是管理和控制大型语言模型 (LLM)的过程,以优化其性能和有效性。这包括以下任务: 提示LLM:生成有效的提示,为LLMs提供适当的背景和信息以产生所需的输出。链接LLM: 结合多个LLM的输…...

利用机器学习实现客户细分的实战

前言: Hello大家好,我是Dream。 今天来学习一下机器学习实战中的案例:创建客户细分,在此过程中也会补充很多重要的知识点,欢迎大家一起前来探讨学习~ 一、导入数据 在此项目中,我们使用 UCI 机器学习代码库…...

Tair(4):Tair原理架构

一个Tair集群主要包括3个必选模块:ConfigServer、Dataserver和Client 通常情况下,一个 Tair 集群中包含2台 Configserver 及多台 DataServer。其中两台 Configserver 互为主备。通过和 Dataserver 之间的心跳检测获取集群中存活可用的 Dataserver&#…...

SAP UI5 walkthrough step7 JSON Model

这个章节,帮助我们理解MVC架构中的M 我们将会在APP中新增一个输入框,并将输入的值绑定到model,然后将其作为描述,直接显示在输入框的右边 首先修改App.controllers.js webapp/controller/App.controller.js sap.ui.define([&…...

智能检测/摄像头监控系统EasyCVR无法启动进程是什么原因?如何解决?

国标GB28181智慧安防平台EasyCVR支持高清视频的接入和传输、分发,平台采用了开放式的网络结构,提供实时远程视频监控、录像回放与存储等功能。视频安防监控汇聚平台可支持1、4、9、16个画面窗口播放,可同时播放多路视频流,也能支持…...

export命令详解

export命令详解 大家好,我是免费搭建查券返利机器人赚佣金就用微赚淘客系统3.0的小编,也是冬天不穿秋裤,天冷也要风度的程序猿! Export命令详解:释放Linux强大的数据导出能力 在Linux世界中,export命令是…...

十几个软件测试实战项目【外卖/医药/银行/电商/金融】

项目一:ShopNC商城 项目概况: ShopNC商城是一个电子商务B2C电商平台系统,功能强大,安全便捷。适合企业及个人快速构建个性化网上商城。 包含PCIOS客户端Adroid客户端微商城,系统PC后台是基于ThinkPHP MVC构架开发的跨…...

用python打印出菱形图案

你可以使用Python编写一个简单的函数来打印菱形图案。下面是一个例子,这个函数接受一个参数n,表示菱形的高度,然后打印出一个菱形图案: def print_diamond(n): # 上半部分 for i in range(n): print(" " …...

k8s 中externalTrafficPolicy应用场景和实践

在Kubernetes(K8s)中,externalTrafficPolicy 是一个用于控制服务的外部流量的策略。这个字段可以在 Service 的定义中设置,其主要作用是决定服务对外部请求的负载均衡行为。具体来说,externalTrafficPolicy 有两个可选…...

Selenium自动化测试框架(超详细)

Selenium自动化测试(基于python) 1、Selenium简介 1.1 Selenium是一款主要用于Web应用程序自动化测试的工具集合。Selenium测试直接运行在浏览器中,本质是通过驱动浏览器,模拟浏览器的操作,比如跳转、输入、点击、下…...

蚂蚁SEO实用的网络baidu蜘蛛有哪些

网络蜘蛛是一种用于从互联网上自动抓取信息的程序。它们根据给定的规则和指令,遍历网站上的页面,收集信息并将其存储在数据库中。网络蜘蛛在搜索引擎、数据挖掘、信息提取等领域有着广泛的应用。本文将介绍一种实用的网络蜘蛛,并探讨其实现原…...

零门槛NAS搭建:WinNAS如何让普通电脑秒变私有云?

一、核心优势:专为Windows用户设计的极简NAS WinNAS由深圳耘想存储科技开发,是一款收费低廉但功能全面的Windows NAS工具,主打“无学习成本部署” 。与其他NAS软件相比,其优势在于: 无需硬件改造:将任意W…...

python如何将word的doc另存为docx

将 DOCX 文件另存为 DOCX 格式(Python 实现) 在 Python 中,你可以使用 python-docx 库来操作 Word 文档。不过需要注意的是,.doc 是旧的 Word 格式,而 .docx 是新的基于 XML 的格式。python-docx 只能处理 .docx 格式…...

大模型多显卡多服务器并行计算方法与实践指南

一、分布式训练概述 大规模语言模型的训练通常需要分布式计算技术,以解决单机资源不足的问题。分布式训练主要分为两种模式: 数据并行:将数据分片到不同设备,每个设备拥有完整的模型副本 模型并行:将模型分割到不同设备,每个设备处理部分模型计算 现代大模型训练通常结合…...

成都鼎讯硬核科技!雷达目标与干扰模拟器,以卓越性能制胜电磁频谱战

在现代战争中,电磁频谱已成为继陆、海、空、天之后的 “第五维战场”,雷达作为电磁频谱领域的关键装备,其干扰与抗干扰能力的较量,直接影响着战争的胜负走向。由成都鼎讯科技匠心打造的雷达目标与干扰模拟器,凭借数字射…...

根据万维钢·精英日课6的内容,使用AI(2025)可以参考以下方法:

根据万维钢精英日课6的内容,使用AI(2025)可以参考以下方法: 四个洞见 模型已经比人聪明:以ChatGPT o3为代表的AI非常强大,能运用高级理论解释道理、引用最新学术论文,生成对顶尖科学家都有用的…...

稳定币的深度剖析与展望

一、引言 在当今数字化浪潮席卷全球的时代,加密货币作为一种新兴的金融现象,正以前所未有的速度改变着我们对传统货币和金融体系的认知。然而,加密货币市场的高度波动性却成为了其广泛应用和普及的一大障碍。在这样的背景下,稳定…...

搭建DNS域名解析服务器(正向解析资源文件)

正向解析资源文件 1)准备工作 服务端及客户端都关闭安全软件 [rootlocalhost ~]# systemctl stop firewalld [rootlocalhost ~]# setenforce 0 2)服务端安装软件:bind 1.配置yum源 [rootlocalhost ~]# cat /etc/yum.repos.d/base.repo [Base…...

【Linux系统】Linux环境变量:系统配置的隐形指挥官

。# Linux系列 文章目录 前言一、环境变量的概念二、常见的环境变量三、环境变量特点及其相关指令3.1 环境变量的全局性3.2、环境变量的生命周期 四、环境变量的组织方式五、C语言对环境变量的操作5.1 设置环境变量:setenv5.2 删除环境变量:unsetenv5.3 遍历所有环境…...

springboot 日志类切面,接口成功记录日志,失败不记录

springboot 日志类切面,接口成功记录日志,失败不记录 自定义一个注解方法 import java.lang.annotation.ElementType; import java.lang.annotation.Retention; import java.lang.annotation.RetentionPolicy; import java.lang.annotation.Target;/***…...

自然语言处理——文本分类

文本分类 传统机器学习方法文本表示向量空间模型 特征选择文档频率互信息信息增益(IG) 分类器设计贝叶斯理论:线性判别函数 文本分类性能评估P-R曲线ROC曲线 将文本文档或句子分类为预定义的类或类别, 有单标签多类别文本分类和多…...