MySql数据库全量备份脚本
#!/bin/bash# 设置数据库连接信息
DB_HOST="localhost"
DB_USER="root"
DB_PASS="密码"
DB_NAMES=("db1" "db2" "db3" "db4")# 设置备份目录
BACKUP_DIR="/home/mysql/mysql-back/everyday"
# 每天备份的文件夹名称
DATE_DIR=$(date +%Y%m%d)# 创建备份文件夹
mkdir -p "$BACKUP_DIR/$DATE_DIR"# 备份数据库
for DB_NAME in "${DB_NAMES[@]}"; domysqldump -h $DB_HOST -u $DB_USER -p$DB_PASS $DB_NAME > "$BACKUP_DIR/$DATE_DIR/backup_$DB_NAME.sql"
done# 压缩备份文件夹
tar -czf "$BACKUP_DIR/$DATE_DIR.tar.gz" -C "$BACKUP_DIR" "$DATE_DIR" && rm -rf "$BACKUP_DIR/$DATE_DIR"# 删除50天前的压缩文件夹
find "$BACKUP_DIR" -type f -name "*.gz" -mtime +50 -exec rm {} \;echo "Database backup completed successfully."   
操作Linux指令
1.先修改地址 ,用户名 密码 数据库名信息
 2.修改权限为可执行
 chmod +x backup_script.sh
./backup_script.sh
3.df -h /home/mysql/mysql-back
 查看备份文件所在位置占用的空间大小  ,执行一次之后看下压缩包大小是多少  
 du -sm /home/mysql/mysql-back/everyday | awk '{print $1 "MB"}'
乘以100 除以 1024 看下一百天大概有多少
4.设置定时任务列表  每天凌晨3点执行一次
 crontab -e
 0 3 * * * /home/mysql/mysql/bin/backup_script.sh
5.crontab -l
查看定时任务是否设置成功
总结:全量备份依赖于mysql自带的mysqldump 组件,具体备份文件保留多少天,要看你自己服务器磁盘的空间来决定;
如果公司有运维团队,搞全量加增量结合比较好。如果是小公司一个人干全部,那就直接每天全量备份就好了;
  
相关文章:
MySql数据库全量备份脚本
#!/bin/bash# 设置数据库连接信息 DB_HOST"localhost" DB_USER"root" DB_PASS"密码" DB_NAMES("db1" "db2" "db3" "db4")# 设置备份目录 BACKUP_DIR"/home/mysql/mysql-back/everyday" # 每天…...
windows10下jdk安装
文章目录 windows10下jdk安装说明what安装包下载执行安装包验证是否安装成功 windows10下jdk安装 说明 操作系统:windows10 版本:1.8 what JDK(Java Development Kit) 是 Java 语言的软件开发工具包 安装包下载 https://www.oracle.com/java/techn…...
Centos7防火墙及端口开启
1、防火墙 1.1、查看防火墙是否开启 systemctl status firewalld 1.2、开启防火墙 firewall-cmd --list-ports 1.3、重启防火墙 firewall-cmd --reload 2、端口 2.1、查看所有已开启的端口号 firewall-cmd --list-ports 2.2、手动开启端口 启动防火墙后,默认没有开…...
vue开发,axios网络请求框架基本用法和封装
axios安装 npm install axiosaxios基本用法 默认的get请求,参数用params追加,多个参数通过json对象的方式,例如params:‘{type:“home”,page:1}’ axios({url: https://api.videolog.net.cn/baidu/token,params: }).then(value > {co…...
对比SPI、UART、I2C通信的区别与应用
SPI、UART、I2C通信是常用的数字通信协议,它们在不同的场景下有不同的应用。下面,我将分别介绍它们的特点、区别与应用。 SPI通信 SPI通信是一种串行同步通信协议,它的全称为“Serial Peripheral Interface”。SPI通信是一种单主多从的通信方…...
CentOS7安装MySQL8.0
一、使用Yum安装 1. 使用wget下载MySQL的rpm包 wget https://repo.mysql.com//mysql80-community-release-el7-3.noarch.rpm2. 安装下载好的rpm包 yum localinstall mysql80-community-release-el7-3.noarch.rpm 3. 安装mysql(该步可能出现问题) yum…...
【Go<—>Java】gRPC测试注意事项
在做go和Java之间gRPC调用之前需要完成以下两项工作: go语言版本的gRPC调用,实现server端和client端Java语言版本的gRPC调用,实现server端和client端 由于gRPC是跨语言的通信协议,所以我们可以相互调用,有以下2种调用…...
java面试题整合
1.Java数据类型 ✅ Java是一种静态类型语言,它具有丰富的数据类型用于声明变量和方法返回类型。Java中的数据类型分为两类:原始数据类型(Primitive Data Types)和引用数据类型(Reference Data Types)。 原…...
2023年12月7日:QT实现登陆界面
#include "mywidget.h"MyWidget::MyWidget(QWidget *parent): QWidget(parent) {//窗口设置this->resize(600,500);//重新设置窗口大小this->setWindowTitle("QQ-盗版");//设置窗口名为QQ-盗版this->setWindowIcon(QIcon("D:\\Qt\\funny\\pi…...
常用的测试用例大全
登录、添加、删除、查询模块是我们经常遇到的,这些模块的测试点该如何考虑 1)登录 ① 用户名和密码都符合要求(格式上的要求) ② 用户名和密码都不符合要求(格式上的要求) ③ 用户名符合要求,密码不符合要求(格式上的要求) ④ 密码符合要求…...
《python每天一小段》--12 数据可视化《1》
欢迎阅读《Python每天一小段》系列!在本篇中,将使用Python Matplotlib实现数据可视化的简单图形。 文章目录 一、概念(1)安装matplotlib(2)数据可视化实现步骤 二、绘制简单的折线图(1ÿ…...
分类预测 | Matlab实现HPO-GRU【23年新算法】基于猎食者优化算法优化门控循环单元的数据分类预测
分类预测 | Matlab实现DBO-SVM蜣螂算法优化支持向量机的数据分类预测【23年新算法】 目录 分类预测 | Matlab实现DBO-SVM蜣螂算法优化支持向量机的数据分类预测【23年新算法】分类效果基本描述程序设计参考资料 分类效果 基本描述 1.HPO-GRU【23年新算法】基于猎食者优化算法优…...
【Pytorch】学习记录分享2——Tensor基础,数据类型,及其多种创建方式
pytorch 官方文档 Tensor基础,数据类型,及其多种创建方式 1. 创建 Creating Tensor: 标量、向量、矩阵、tensor2. 三种方法可以创建张量,一是通过列表(list),二是通过元组(tuple),三是通过Numpy的数组(arra…...
实验7:索引和视图定义
【实验目的】 1、了解索引和视图的含义 2、熟悉索引和视图的创建规则 3、掌握索引和视图的创建和管理 【实验设备及器材】 1、硬件:PC机; 2、软件:(1)Windows7; (2)Microsoft SQL Server 2012。 【主要内容】 索引的创建、删除、重建…...
Source Tree回滚 重置 贮藏操作
回滚提交 source tree的回滚提交: 在执行该操作时将会对history中提交的指定节点直接进行回滚,将该节点执行的提交操作撤销(如当前节点是提交文件,执行回滚提交时将会删除该文件,如果当前节点的前面的节点对该节点内容进行修改后,执行回滚提交时需要执行冲突解决),同时生成一次…...
Android13 不能静态注册的几个广播
Android13 不能静态注册的几个广播 文章目录 Android13 不能静态注册的几个广播一、不能静态注册的广播:二、静态注册无法生效的分析1、Intent.java2、其他地方声明了不能静态注册的广播3、为啥静态注册的广播无效?4、其他静态注册无法生效的广播5、其他Android fra…...
吴恩达深度学习L2W1作业1
初始化 欢迎来到“改善深度神经网络”的第一项作业。 训练神经网络需要指定权重的初始值,而一个好的初始化方法将有助于网络学习。 如果你完成了本系列的上一课程,则可能已经按照我们的说明完成了权重初始化。但是,如何为新的神经网络选择…...
uniapp原生插件之安卓app添加到其他应用打开原生插件
插件介绍 安卓app添加到其他应用打开原生插件,接收分享的文本和文件,支持获取和清空剪切板内容 插件地址 安卓app添加到其他应用打开原生插件,支持获取剪切板内容 - DCloud 插件市场 超级福利 uniapp 插件购买超级福利 详细使用文档 u…...
scala编码
1、Scala高级语言 Scala简介 Scala是一门类Java的多范式语言,它整合了面向对象编程和函数式编程的最佳特性。具体来讲Scala运行于Java虚拟机(JVM)之上,井且兼容现有的Java程序,同样具有跨平台、可移植性好、方便的垃圾回收等特性…...
智慧路灯杆如何实现雪天道路安全监测
随着北方区域连续发生暴雪、寒潮、大风等气象变化,北方多地产生暴雪和低温雨雪冰冻灾害风险,冬季雨雪天气深度影响人们出行生活,也持续增加道路交通风险。 智慧路灯杆是现代城市不可或缺的智能基础设施,凭借搭载智慧照明、环境监测…...
idea大量爆红问题解决
问题描述 在学习和工作中,idea是程序员不可缺少的一个工具,但是突然在有些时候就会出现大量爆红的问题,发现无法跳转,无论是关机重启或者是替换root都无法解决 就是如上所展示的问题,但是程序依然可以启动。 问题解决…...
TDengine 快速体验(Docker 镜像方式)
简介 TDengine 可以通过安装包、Docker 镜像 及云服务快速体验 TDengine 的功能,本节首先介绍如何通过 Docker 快速体验 TDengine,然后介绍如何在 Docker 环境下体验 TDengine 的写入和查询功能。如果你不熟悉 Docker,请使用 安装包的方式快…...
突破不可导策略的训练难题:零阶优化与强化学习的深度嵌合
强化学习(Reinforcement Learning, RL)是工业领域智能控制的重要方法。它的基本原理是将最优控制问题建模为马尔可夫决策过程,然后使用强化学习的Actor-Critic机制(中文译作“知行互动”机制),逐步迭代求解…...
【人工智能】神经网络的优化器optimizer(二):Adagrad自适应学习率优化器
一.自适应梯度算法Adagrad概述 Adagrad(Adaptive Gradient Algorithm)是一种自适应学习率的优化算法,由Duchi等人在2011年提出。其核心思想是针对不同参数自动调整学习率,适合处理稀疏数据和不同参数梯度差异较大的场景。Adagrad通…...
Vue2 第一节_Vue2上手_插值表达式{{}}_访问数据和修改数据_Vue开发者工具
文章目录 1.Vue2上手-如何创建一个Vue实例,进行初始化渲染2. 插值表达式{{}}3. 访问数据和修改数据4. vue响应式5. Vue开发者工具--方便调试 1.Vue2上手-如何创建一个Vue实例,进行初始化渲染 准备容器引包创建Vue实例 new Vue()指定配置项 ->渲染数据 准备一个容器,例如: …...
如何在看板中有效管理突发紧急任务
在看板中有效管理突发紧急任务需要:设立专门的紧急任务通道、重新调整任务优先级、保持适度的WIP(Work-in-Progress)弹性、优化任务处理流程、提高团队应对突发情况的敏捷性。其中,设立专门的紧急任务通道尤为重要,这能…...
CocosCreator 之 JavaScript/TypeScript和Java的相互交互
引擎版本: 3.8.1 语言: JavaScript/TypeScript、C、Java 环境:Window 参考:Java原生反射机制 您好,我是鹤九日! 回顾 在上篇文章中:CocosCreator Android项目接入UnityAds 广告SDK。 我们简单讲…...
vue3 定时器-定义全局方法 vue+ts
1.创建ts文件 路径:src/utils/timer.ts 完整代码: import { onUnmounted } from vuetype TimerCallback (...args: any[]) > voidexport function useGlobalTimer() {const timers: Map<number, NodeJS.Timeout> new Map()// 创建定时器con…...
土地利用/土地覆盖遥感解译与基于CLUE模型未来变化情景预测;从基础到高级,涵盖ArcGIS数据处理、ENVI遥感解译与CLUE模型情景模拟等
🔍 土地利用/土地覆盖数据是生态、环境和气象等诸多领域模型的关键输入参数。通过遥感影像解译技术,可以精准获取历史或当前任何一个区域的土地利用/土地覆盖情况。这些数据不仅能够用于评估区域生态环境的变化趋势,还能有效评价重大生态工程…...
自然语言处理——Transformer
自然语言处理——Transformer 自注意力机制多头注意力机制Transformer 虽然循环神经网络可以对具有序列特性的数据非常有效,它能挖掘数据中的时序信息以及语义信息,但是它有一个很大的缺陷——很难并行化。 我们可以考虑用CNN来替代RNN,但是…...
