【Pytorch】学习记录分享2——Tensor基础,数据类型,及其多种创建方式
pytorch 官方文档
Tensor基础,数据类型,及其多种创建方式
- 1. 创建 Creating Tensor: 标量、向量、矩阵、tensor
- 2. 三种方法可以创建张量,一是通过列表(list),二是通过元组(tuple),三是通过Numpy的数组(array),基本创建代码如下:
- 3. 张量类型, pytorch下的数组类型
- 4. 张量特殊类型及其创建方法
1. 创建 Creating Tensor: 标量、向量、矩阵、tensor
#标量 scalar
scalar = torch.tensor(7)
scalar.ndim # 查看维度
scalar.item() # 转换成 python中的整数 #向量 vector
vector = torch.tensor([7, 7])
vector.shape #查看形状#矩阵 matrix
MATRIX = torch.tensor([[7, 8], [9, 10]])#随机tensor,下面是一些生成随机tensor的方法:[更多详细方法见博客](https://blog.csdn.net/Darlingqiang/article/details/134946446?spm=1001.2014.3001.5501)

2. 三种方法可以创建张量,一是通过列表(list),二是通过元组(tuple),三是通过Numpy的数组(array),基本创建代码如下:
import torch # 导入pytorch
import numpy as np # 导入numpyprint(torch.__version__) # 查看torch版本
t1 = torch.tensor([1,1]) # 通过列表创建
t1 = torch.tensor((1,1)) # 通过元组创建
t1 = torch.tensor(np.array([1,1]) # 通过数组创建
t1 # tensor([1, 1])
张量相关属性查看的基本操作,后期遇到的张量结构都比较复杂,难以用肉眼直接看出,因此相关方法用的也比较频繁
| 方法 | 描述 | 栗子🌰 |
|---|---|---|
| ndim | 查看张量的维度,也可使用dim() | t.ndim /t.dim() |
| dtype | 查看张量的数据结构 | t.dtype |
| shape | 查看张量的形状 | t.shape |
| size | 查看张量的形状,和shape方法相同 | t.size() |
| numel | 查看张量内元素的元素 | t.numel() |
注:size()和numel()是需要加括号, 实例
t2 = torch.tensor([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
t2.ndim # 2
t2.dtype # torch.int64
t2.shape # torch.Size([3, 3])
t2.size() # torch.Size([3, 3])
t2.numel() # 返回9
3. 张量类型, pytorch下的数组类型
python作为动态语言,很少去注意到变量的类型,因为我们编写代码时并不需要声明变量类型,但是细心的小伙伴会发现,调用dtype后返回的是torch.int64, 这说明pytorch对于数组的类型是很严谨,因此我们还要了解在pytorch下的数组类型
注: 只需要记住有整数,浮点数,布尔型和复数即可
| 类型 | dtype |
|---|---|
| 32bit浮点数 | torch.float32 或 torch.float |
| 64bit浮点数 | torch.float64 或 torch.double |
| 16bit浮点数 | torch.float16 |
| 8bit无符号整数 | torch.uint8 |
| 8bit有符号整数 | torch.int8 |
| 16bit有符号整数 | torch.int16 或 torch.short |
| 32bit有符号整数 | torch.int32 或 torch.int |
| 64bit有符号整数 | torch.int64 或 torch.long |
| 布尔型 | torch.bool |
| 复数型 | torch.complex64 |
在pytorch中,默认的张量整数类型是int64,使用浮点数类型是float32【不同版本pytorch可能不同】;
双精度double能存储的有效位数比单精度float更多,但相应的需要的存储空间越多
int16,int32,int64的区别主要在于表示值的范围不同,数字越大所能表示的范围越大
在pytorch中,可以使用在创建时指定数据类型,也可以后期进行修改,实例如下
t3 = torch.tensor([True, 1.0]) # tensor([1., 1.])隐式转换
t3 = torch.tensor([1,1,1,1],dtype=float)
t3.dtype # torch.float64
t3.int() # tensor([1, 1, 1, 1], dtype=torch.int32)
t3.byte() # tensor([1., 1., 1., 1.], dtype=torch.float64)
t3.short() # tensor([1, 1, 1, 1], dtype=torch.int16)
t3.bool() # tensor([True, True, True, True])
4. 张量特殊类型及其创建方法
| 方法 | 描述 |
|---|---|
| torch.zeros() | 创建全为0的张量 |
| torch.ones() | 创建全为1的张量 |
| torch.eye() | 创建对角为1的单位矩阵 |
| torch.diag(t) | 创建对角矩阵,需要传入1维张量 |
| torch.rand() | 创建服从0-1均匀分布的张量 |
| torch.randn() | 创建服从标准正态分布的张量 |
| torch.normal() | 创建服从指定正态分布的张量 |
| torch.randn | 创建服从标准正态分布的张量 |
| torch.randint() | 创建由指定范围随机抽样整数组成的张量 |
| torch.arange() | 创建给定范围内的连续整数组成的张量 |
| torch.linspace() | 创建给定范围内等距抽取的数组成的张量 |
| torch.empty() | 创建未初始化的指定形状的张量 |
| torch.full() | 创建指定形状,指定填充数值的张量 |
需要注意有哪些方法是传入代表结构的列表,有哪些是传入张量,有哪些是传入数字,实例如下
torch.zeros([3,3]) # 创建3行3列,元素全为0的2维张量
torch.ones([3,3]) # 创建3行3列,元素全为1的2维张量
torch.eye(4) # 创建4行4列的单位矩阵t = torch.tensor([1,2,3,4]) # 创建需要传入的1维张量
torch.diag(t) # 创建对角元素为1,2,3,4的对角矩阵

torch.rand([3,4]) # 创建元素为0-1分布的3行4列张量
torch.normal(3, 4, [2, 2]) # 创建服从均值为3,标准差为4的正态分布元素组成的张量
torch.randn([3,4]) # 创建元素为标准正态分布的3行4列张量

torch.randint(0,20,[3,4]) # 创建由0-20间的随机整数组成的3行4列的张量
torch.arange(1,20) # 创建0-20内连续整数组成的张量

torch.linspace(1, 10, 5) # 创建给定范围内等距取样的数组成的张量 1-10范围内,创建5个元素
torch.empty([3,4]) # 创建3行4列的未初始化张量
torch.full([3, 4], 2) # 创建3行4列的全为2的张量

相关文章:
【Pytorch】学习记录分享2——Tensor基础,数据类型,及其多种创建方式
pytorch 官方文档 Tensor基础,数据类型,及其多种创建方式 1. 创建 Creating Tensor: 标量、向量、矩阵、tensor2. 三种方法可以创建张量,一是通过列表(list),二是通过元组(tuple),三是通过Numpy的数组(arra…...
实验7:索引和视图定义
【实验目的】 1、了解索引和视图的含义 2、熟悉索引和视图的创建规则 3、掌握索引和视图的创建和管理 【实验设备及器材】 1、硬件:PC机; 2、软件:(1)Windows7; (2)Microsoft SQL Server 2012。 【主要内容】 索引的创建、删除、重建…...
Source Tree回滚 重置 贮藏操作
回滚提交 source tree的回滚提交: 在执行该操作时将会对history中提交的指定节点直接进行回滚,将该节点执行的提交操作撤销(如当前节点是提交文件,执行回滚提交时将会删除该文件,如果当前节点的前面的节点对该节点内容进行修改后,执行回滚提交时需要执行冲突解决),同时生成一次…...
Android13 不能静态注册的几个广播
Android13 不能静态注册的几个广播 文章目录 Android13 不能静态注册的几个广播一、不能静态注册的广播:二、静态注册无法生效的分析1、Intent.java2、其他地方声明了不能静态注册的广播3、为啥静态注册的广播无效?4、其他静态注册无法生效的广播5、其他Android fra…...
吴恩达深度学习L2W1作业1
初始化 欢迎来到“改善深度神经网络”的第一项作业。 训练神经网络需要指定权重的初始值,而一个好的初始化方法将有助于网络学习。 如果你完成了本系列的上一课程,则可能已经按照我们的说明完成了权重初始化。但是,如何为新的神经网络选择…...
uniapp原生插件之安卓app添加到其他应用打开原生插件
插件介绍 安卓app添加到其他应用打开原生插件,接收分享的文本和文件,支持获取和清空剪切板内容 插件地址 安卓app添加到其他应用打开原生插件,支持获取剪切板内容 - DCloud 插件市场 超级福利 uniapp 插件购买超级福利 详细使用文档 u…...
scala编码
1、Scala高级语言 Scala简介 Scala是一门类Java的多范式语言,它整合了面向对象编程和函数式编程的最佳特性。具体来讲Scala运行于Java虚拟机(JVM)之上,井且兼容现有的Java程序,同样具有跨平台、可移植性好、方便的垃圾回收等特性…...
智慧路灯杆如何实现雪天道路安全监测
随着北方区域连续发生暴雪、寒潮、大风等气象变化,北方多地产生暴雪和低温雨雪冰冻灾害风险,冬季雨雪天气深度影响人们出行生活,也持续增加道路交通风险。 智慧路灯杆是现代城市不可或缺的智能基础设施,凭借搭载智慧照明、环境监测…...
C语言指针基础题(二)
目录 例题一题目解析及答案 例题二题目解析及答案 例题三题目解析及答案 例题四题目解析及答案 例题五题目解析及答案 感谢各位大佬对我的支持,如果我的文章对你有用,欢迎点击以下链接 🐒🐒🐒 个人主页 🥸🥸…...
物奇平台MIC配置与音频通路关系
物奇平台MIC配置与音频通路关系 是否需要申请加入数字音频系统研究开发交流答疑群(课题组)?可加我微信hezkz17, 本群提供音频技术答疑服务,群赠送语音信号处理降噪算法,蓝牙耳机音频,DSP音频项目核心开发资料, 1 255代表无效&am…...
外包干了3年,技术退步太明显了。。。。。
先说一下自己的情况,本科生生,18年通过校招进入武汉某软件公司,干了差不多3年的功能测试,今年国庆,感觉自己不能够在这样下去了,长时间呆在一个舒适的环境会让一个人堕落!而我已经在一个企业干了四年的功能…...
阶段十-java新特性
JDK9新特性 1.模块化系统 jar包结构的变化 jar -》model -》package -》class 通过不同的模块进行开发 每个模块都有自己的模块配置文件module-info.java 2.JShell JDK9自带的命令行开发,在进行简单的代码调试时可以直接编译使用 可以定义变量,方法&…...
win10重装系统历程
win10系统更新出问题了,重置系统卡死,遂决定重装。 微软官方工具制作U盘启动盘, 进行到分区时,一冲动把盘都格式化了, 后面了解到,即便进不了系统也有办法备份数据的... 进行到安装时,提示W…...
【知识积累】深度度量学习综述
原文指路:https://hav4ik.github.io/articles/deep-metric-learning-survey Problem Setting of Supervised Metric Learning 深度度量学习是一组旨在衡量数据样本之间相似性的技术。 Contrastive Approaches 对比方法的主要思想是设计一个损失函数,直…...
webrtc网之sip转webrtc
OpenSIP是一个开源的SIP(Session Initiation Protocol)服务器,它提供了一个可扩展的基础架构,用于建立、终止和管理VoIP(Voice over IP)通信会话。SIP是一种通信协议,用于建立、修改和终止多媒体…...
【Spring】依赖注入之属性注入详解
前言: 我们在进行web开发时,基本上一个接口对应一个实现类,比如IOrderService接口对应一个OrderServiceImpl实现类,给OrderServiceImpl标注Service注解后,Spring在启动时就会将其注册成bean进行统一管理。在Co…...
6-tornado配置文件的使用(命令行解析、文件设置)
tornado.options options 可以让服务运行前提前设置参数,而常见的2种设置参数方式为:1. 命令行设置 2. 文件设置命令行解析 使用tornado.options.define前定义,通常在模块的顶层。 然后,可以将这些选项作为以下属性的属性进行访…...
k8s ingress service endpoints 解决微信服务器验证问题(内网穿透)
最近公司要搞微信公众号开发,想用自己公司内网的电脑调试,但涉及到微信服务器地址(URL)验证的问题(内网穿透),查了网上一堆文章有推荐ngrok的,但被微信墙了;有推荐sunny-ngrok的,免费…...
postgresql-effective_cache_size参数详解
在 PostgreSQL 中,effective_cache_size 是一个配置参数,用于告诉查询规划器关于系统中可用缓存的估计信息。这个参数并不表示实际的内存量,而是用于告诉 PostgreSQL 查询规划器系统中可用的磁盘缓存和操作系统级别的文件系统缓存的大小。它用…...
CUDA锁页内存的使用
1.定义指针变量 float *host_Weights; // 锁页内存 float *dev_Weights; // 设备端内存2.分配内存 cudaHostAlloc((void**)&host_Weights, numInputs * sizeof(float), cudaHostAllocDefault); // 用锁页内存,可以有效加快数据传递速度 cudaMalloc((vo…...
【网络】每天掌握一个Linux命令 - iftop
在Linux系统中,iftop是网络管理的得力助手,能实时监控网络流量、连接情况等,帮助排查网络异常。接下来从多方面详细介绍它。 目录 【网络】每天掌握一个Linux命令 - iftop工具概述安装方式核心功能基础用法进阶操作实战案例面试题场景生产场景…...
React第五十七节 Router中RouterProvider使用详解及注意事项
前言 在 React Router v6.4 中,RouterProvider 是一个核心组件,用于提供基于数据路由(data routers)的新型路由方案。 它替代了传统的 <BrowserRouter>,支持更强大的数据加载和操作功能(如 loader 和…...
STM32+rt-thread判断是否联网
一、根据NETDEV_FLAG_INTERNET_UP位判断 static bool is_conncected(void) {struct netdev *dev RT_NULL;dev netdev_get_first_by_flags(NETDEV_FLAG_INTERNET_UP);if (dev RT_NULL){printf("wait netdev internet up...");return false;}else{printf("loc…...
STM32F4基本定时器使用和原理详解
STM32F4基本定时器使用和原理详解 前言如何确定定时器挂载在哪条时钟线上配置及使用方法参数配置PrescalerCounter ModeCounter Periodauto-reload preloadTrigger Event Selection 中断配置生成的代码及使用方法初始化代码基本定时器触发DCA或者ADC的代码讲解中断代码定时启动…...
大语言模型如何处理长文本?常用文本分割技术详解
为什么需要文本分割? 引言:为什么需要文本分割?一、基础文本分割方法1. 按段落分割(Paragraph Splitting)2. 按句子分割(Sentence Splitting)二、高级文本分割策略3. 重叠分割(Sliding Window)4. 递归分割(Recursive Splitting)三、生产级工具推荐5. 使用LangChain的…...
全球首个30米分辨率湿地数据集(2000—2022)
数据简介 今天我们分享的数据是全球30米分辨率湿地数据集,包含8种湿地亚类,该数据以0.5X0.5的瓦片存储,我们整理了所有属于中国的瓦片名称与其对应省份,方便大家研究使用。 该数据集作为全球首个30米分辨率、覆盖2000–2022年时间…...
跨链模式:多链互操作架构与性能扩展方案
跨链模式:多链互操作架构与性能扩展方案 ——构建下一代区块链互联网的技术基石 一、跨链架构的核心范式演进 1. 分层协议栈:模块化解耦设计 现代跨链系统采用分层协议栈实现灵活扩展(H2Cross架构): 适配层…...
在Ubuntu24上采用Wine打开SourceInsight
1. 安装wine sudo apt install wine 2. 安装32位库支持,SourceInsight是32位程序 sudo dpkg --add-architecture i386 sudo apt update sudo apt install wine32:i386 3. 验证安装 wine --version 4. 安装必要的字体和库(解决显示问题) sudo apt install fonts-wqy…...
【VLNs篇】07:NavRL—在动态环境中学习安全飞行
项目内容论文标题NavRL: 在动态环境中学习安全飞行 (NavRL: Learning Safe Flight in Dynamic Environments)核心问题解决无人机在包含静态和动态障碍物的复杂环境中进行安全、高效自主导航的挑战,克服传统方法和现有强化学习方法的局限性。核心算法基于近端策略优化…...
Linux 内存管理实战精讲:核心原理与面试常考点全解析
Linux 内存管理实战精讲:核心原理与面试常考点全解析 Linux 内核内存管理是系统设计中最复杂但也最核心的模块之一。它不仅支撑着虚拟内存机制、物理内存分配、进程隔离与资源复用,还直接决定系统运行的性能与稳定性。无论你是嵌入式开发者、内核调试工…...
