当前位置: 首页 > news >正文

【Pytorch】学习记录分享1——Tensor张量初始化与基本操作

1. 基础资料汇总

资料汇总
pytroch中文版本教程
PyTorch入门教程
B站强推!2023公认最通俗易懂的【PyTorch】教程,200集付费课程(附代码)人工智能_机器
视频
1.PyTorch简介
2.PyTorch环境搭建
basic: python numpy pandas pytroch

在这里插入图片描述

theory: study mlp cnn transform rnn

model: AlexNet VGG ResNet Yolo SSD

2. Tensor张量初始化与基本操作(numpy对比)

2.1 tensor 创建的集中基本方式
import numpy as np
import torchnp_a = np.array([1,2,3]) #ndarrays
tensor_a = torch.tensor([1,2,3]) #tensor
# tensor function and computer
tensor_b = torch.empty(5,3)
tensor_c = torch.randn(5,3) #用于确定模型的输入维度,做数据头尾
tensor_d = torch.zeros(5,3)  #用于 x->y 训练的一个映射 神经网络y truth_label one_hot表示
tensor_e = torch.zeros(5,3,dtype= torch.long) # dtype 数据格式print("np_a",np_a)
print("tensor_a", tensor_a)
print("tensor_b", tensor_b)
print("tensor_c", tensor_c)
print("tensor_d", tensor_d)
print("tensor_e", tensor_e)

在这里插入图片描述

import torch#通过数据直接创建张量:
data = [[1, 2, 3], [4, 5, 6]]
tensor1 = torch.tensor(data)
print("tensor1",tensor1)#使用特定形状的全零张量:
import torch
tensor2 = torch.zeros(2, 3)
print("tensor2",tensor2)#使用特定形状的全一张量:
import torch
tensor3 = torch.ones(2, 3)
print("tensor3",tensor3)#利用随机数创建张量:
import torch
tensor4 = torch.rand(2, 3)
print("tensor4",tensor4)

在这里插入图片描述

2.2 修改tensor/numpy长度与维度
# 基于已经存在的 tensor进行操作
x = torch.tensor([1,2,3]) 
x.new_ones(5,3)  # 修改 x 的维度tensor_f = torch.randn_like(x,dtype=torch.float) # 修改x 的类型与维度
print("tensor_f = ", tensor_f)# 维度查看 np  shape   |  tensor size 层到另外一个层 矩阵相乘
np.array([1, 2, 3]).shape
torch.tensor([1,2,3]).size()

在这里插入图片描述

# 更改维度 np reshape 
y.size()y.view(15)y.view(15,1)y.view(-1,5) # -1 表示自动计算,根据总维度/5得到

在这里插入图片描述

2.3 取 tensor/numpy 元素
y = np.array([[1,2,3],[4,5,6]])np.array([[1,2,3],[4,5,6]])[0]
np.array([[1,2,3],[4,5,6]])[0,:] #":"表示不指定行,默认为该行所有np.array([[1,2,3],[4,5,6]])[:,0]
print(y[:,0])  # 取第一列
print(y[0,:])  # 取第一行y[3,0].item() # 常用 loss 反向传导 日志 打印查看 loss 是否减少 查看具体数值

在这里插入图片描述

2.4 numpy 对象的基本运算
import numpy as np# 加法
result_array_add = np.array([1, 2]) + np.array([3, 4])# 减法
result_array_sub = np.array([1, 2]) - np.array([3, 4])# 乘法
result_array_mul = np.array([1, 2]) * np.array([3, 4])# 除法
result_array_div = np.array([1, 2]) / np.array([3, 4])# 数乘
result_array_scalar_mul = 2 * np.array([3, 4])# 内积
result_array_dot = np.dot(np.array([1, 2]), np.array([3, 4]))# 外积
result_array_outer = np.outer(np.array([1, 2]), np.array([3, 4]))print("add = ", result_array_add)
print("sub = ", result_array_sub)
print("mul = ", result_array_mul)
print("div = ", result_array_div)
print("scalar_mul = ", result_array_scalar_mul)
print("dot = ", result_array_dot)
print("outer = ", result_array_outer)

在这里插入图片描述

2.5 tensor 对象的基本运算
import torch# 加法
result_tensor_add = torch.tensor([1, 2]) + torch.tensor([3, 4])# 减法
result_tensor_sub = torch.tensor([1, 2]) - torch.tensor([3, 4])# 乘法
result_tensor_mul = torch.tensor([1, 2]) * torch.tensor([3, 4])# 除法
result_tensor_div = torch.tensor([1, 2], dtype=torch.float) / torch.tensor([3, 4], dtype=torch.float)# 数乘
result_tensor_scalar_mul = 2 * torch.tensor([3, 4])# 内积
result_tensor_dot = torch.dot(torch.tensor([1, 2]), torch.tensor([3, 4]))# 外积
result_tensor_outer = torch.ger(torch.tensor([1, 2]), torch.tensor([3, 4]))print("add = ", result_tensor_add)
print("sub = ", result_tensor_sub)
print("mul = ", result_tensor_mul)
print("div = ", result_tensor_div)
print("scalar_mul = ", result_tensor_scalar_mul)
print("dot = ", result_tensor_dot)
print("outer = ", result_tensor_outer)

在这里插入图片描述

相关文章:

【Pytorch】学习记录分享1——Tensor张量初始化与基本操作

1. 基础资料汇总 资料汇总 pytroch中文版本教程 PyTorch入门教程 B站强推!2023公认最通俗易懂的【PyTorch】教程,200集付费课程(附代码)人工智能_机器 视频 1.PyTorch简介 2.PyTorch环境搭建 basic: python numpy pandas pytroch…...

Python数据科学视频讲解:Python的数据运算符

2.9 Python的数据运算符 视频为《Python数据科学应用从入门到精通》张甜 杨维忠 清华大学出版社一书的随书赠送视频讲解2.9节内容。本书已正式出版上市,当当、京东、淘宝等平台热销中,搜索书名即可。内容涵盖数据科学应用的全流程,包括数据科…...

参数学习——糖果问题(人工智能期末复习)

之前看了好久都不知道这题咋写,后来看了这篇机器智能-高频问题:糖果问题,大概看明白了,其实主要围绕着这两个公式 光看公式也看不懂,还是要结合题目来 己知有草莓味和酸橙味两种类型的糖果,分别放入5种不同…...

【深度学习】注意力机制(六)

本文介绍一些注意力机制的实现,包括MobileVITv1/MobileVITv2/DAT/CrossFormer/MOA。 【深度学习】注意力机制(一) 【深度学习】注意力机制(二) 【深度学习】注意力机制(三) 【深度学习】注意…...

螺旋矩阵算法(leetcode第59题)

题目描述: 给你一个正整数 n ,生成一个包含 1 到 n2 所有元素,且元素按顺时针顺序螺旋排列的 n x n 正方形矩阵 matrix 。示例 1:输入:n 3 输出:[[1,2,3],[8,9,4],[7,6,5]] 示例 2:输入&#…...

SQL Server 服务启动报错:错误1069:由于登录失败而无法启动服务

现象 服务器异常关机以后,SQL Server服务无法启动了。 启动服务时报错: 错误1069:由于登录失败而无法启动服务 解决办法 我的电脑–控制面板–管理工具–服务–右键MSSQLSERVER–属性–登录–登陆身份–选择"本地系统帐户" 设置完成后&am…...

“ABCD“[(int)qrand() % 4]作用

ABCD[(int)qrand() % 4] 作用 具体来说: qrand() 是一个函数,通常在C中用于生成一个随机整数。% 4 会取 qrand() 生成的随机数除以4的余数。因为4只有四个不同的余数(0, 1, 2, 3),所以这实际上会生成一个0到3之间的随…...

Vue2面试题:说一下组件通信有哪些方式?

父传子 1、自定义属性 props:在父组件中,给子组件绑定一个自定义属性,在子组件中,通过props进行接收 2、$parent:直接访问父组件实例的属性和方法 3、$attrs:在父组件中,给子组件绑定一个自定义…...

C# 两个日期比较大小

文章目录 C# 两个日期比较大小直接比较大小工具类DateTime.Compare C# 两个日期比较大小 直接比较大小 string ed "2023-12-13 09:27:59.000";//过去式DateTime nowDateTime DateTime.Now;DateTime expirationDate Convert.ToDateTime(ed);//质保期 长日期DateT…...

路由基本原理

目录 一、路由器概述 二、路由器的工作原理 三、路由表的形成 四、路由配置 1.连接设备 2.进入系统模式 3.进入接口模式 4.配置网络 5.下一跳的设置 6.设置浮动路由 7.设置默认路由 一、路由器概述 路由器(Router)是一种用于连接不同网络或子…...

配置本地端口镜像示例

镜像概念 定义 镜像是指将指定源的报文复制一份到目的端口。指定源被称为镜像源,目的端口被称为观察端口,复制的报文被称为镜像报文。 镜像可以在不影响设备对原始报文正常处理的情况下,将其复制一份,并通过观察端口发送给监控…...

使用FluentAvalonia组件库快速完成Avalonia前端开发

前言 工欲善其事必先利其器,前面我们花了几篇文章介绍了Avalonia框架以及如何在Avalonia框架下面使用PrismAvalonia完成MVV模式的开发。今天我们将介绍一款重磅级的Avalonia前端组件库,里面封装了我们开发中常用的组件,这样就不用我们自己再写组件了。专注业务功能开发,提…...

JAVA实体类集合该如何去重?

JAVA实体类集合该如何去重? 最近在工作中经常遇到需要去重的需求,所以特意系统的来梳理一下 有目录,不迷路 JAVA实体类集合该如何去重?单元素去重方法一:利用Set去重方法二:利用java 8的stream写法&#xf…...

修改Element UI可清空Input的样式

如图所示&#xff0c;修改Input右侧的清空按钮位置&#xff1a; <el-input class"create-catalog-ipt"placeholder"请输入相关章节标题"v-model"currentCatalogTitle"clearable /> // SCSS环境 ::v-deep {.create-catalog-ipt {input {he…...

Java常用注解

文章目录 第一章、Java注解与元数据1.1&#xff09;元数据与注解概念介绍1.2&#xff09;Java注解的作用和使用1.3&#xff09;注解的分类 第二章、Mybatis框架常用注解2.1&#xff09;Mybatis注解概览2.2&#xff09;常用注解MapperScanMapperSelectInsertUpdateDeleteParam结…...

golang实现同步阻塞、同步非阻塞、异步非阻塞IO模型

一、同步阻塞IO模型TCP和HTTP示例 同步阻塞IO符合我们的直觉认知,应用程序从TCP连接接收数据缓冲区接受数据,如果没有数据就等待——此处就是阻塞,如果有数据需要把数据从内核空间读取到用户空间——此处就是同步。 在Go语言中进行同步阻塞IO编程TCP交互,可以使用标准库中…...

java SSM教师工作量管理系统myeclipse开发mysql数据库springMVC模式java编程计算机网页设计

一、源码特点 java SSM 教师工作量管理系统是一套完善的web设计系统&#xff08;系统采用SSM框架进行设计开发&#xff0c;springspringMVCmybatis&#xff09;&#xff0c;对理解JSP java编程开发语言有帮助&#xff0c;系统具有完整的源代码和数据库&#xff0c;系统主要…...

大数据技术之Hive(超级详细)

第1章 Hive入门 1.1 什么是Hive Hive&#xff1a;由Facebook开源用于解决海量结构化日志的数据统计。 Hive是基于Hadoop的一个数据仓库工具&#xff0c;可以将结构化的数据文件映射为一张表&#xff0c;并提供类SQL查询功能。 本质是&#xff1a;将HQL转化成MapReduce程序 …...

NVMe over Fabrics with SPDK with iRDMA总结 - 1

1.0 Introduction简介 NVM Express* (NVMe*) drives are high-speed, low-latency, solid-state drives (SSDs), that connect over the server Peripheral Component Interconnect Express* (PCIe*) bus. NVM Express* (NVMe*) 硬盘是高速、低延迟的固态硬盘 (SSD),通过服…...

【PTA刷题】求链式线性表的倒数第K项(代码+详解)

文章目录 题目代码详解 题目 给定一系列正整数&#xff0c;请设计一个尽可能高效的算法&#xff0c;查找倒数第K个位置上的数字。 输入格式: 输入首先给出一个正整数K&#xff0c;随后是若干非负整数&#xff0c;最后以一个负整数表示结尾&#xff08;该负数不算在序列内&#…...

[特殊字符] 智能合约中的数据是如何在区块链中保持一致的?

&#x1f9e0; 智能合约中的数据是如何在区块链中保持一致的&#xff1f; 为什么所有区块链节点都能得出相同结果&#xff1f;合约调用这么复杂&#xff0c;状态真能保持一致吗&#xff1f;本篇带你从底层视角理解“状态一致性”的真相。 一、智能合约的数据存储在哪里&#xf…...

未来机器人的大脑:如何用神经网络模拟器实现更智能的决策?

编辑&#xff1a;陈萍萍的公主一点人工一点智能 未来机器人的大脑&#xff1a;如何用神经网络模拟器实现更智能的决策&#xff1f;RWM通过双自回归机制有效解决了复合误差、部分可观测性和随机动力学等关键挑战&#xff0c;在不依赖领域特定归纳偏见的条件下实现了卓越的预测准…...

Java 语言特性(面试系列2)

一、SQL 基础 1. 复杂查询 &#xff08;1&#xff09;连接查询&#xff08;JOIN&#xff09; 内连接&#xff08;INNER JOIN&#xff09;&#xff1a;返回两表匹配的记录。 SELECT e.name, d.dept_name FROM employees e INNER JOIN departments d ON e.dept_id d.dept_id; 左…...

【论文笔记】若干矿井粉尘检测算法概述

总的来说&#xff0c;传统机器学习、传统机器学习与深度学习的结合、LSTM等算法所需要的数据集来源于矿井传感器测量的粉尘浓度&#xff0c;通过建立回归模型来预测未来矿井的粉尘浓度。传统机器学习算法性能易受数据中极端值的影响。YOLO等计算机视觉算法所需要的数据集来源于…...

零基础设计模式——行为型模式 - 责任链模式

第四部分&#xff1a;行为型模式 - 责任链模式 (Chain of Responsibility Pattern) 欢迎来到行为型模式的学习&#xff01;行为型模式关注对象之间的职责分配、算法封装和对象间的交互。我们将学习的第一个行为型模式是责任链模式。 核心思想&#xff1a;使多个对象都有机会处…...

智能分布式爬虫的数据处理流水线优化:基于深度强化学习的数据质量控制

在数字化浪潮席卷全球的今天&#xff0c;数据已成为企业和研究机构的核心资产。智能分布式爬虫作为高效的数据采集工具&#xff0c;在大规模数据获取中发挥着关键作用。然而&#xff0c;传统的数据处理流水线在面对复杂多变的网络环境和海量异构数据时&#xff0c;常出现数据质…...

html-<abbr> 缩写或首字母缩略词

定义与作用 <abbr> 标签用于表示缩写或首字母缩略词&#xff0c;它可以帮助用户更好地理解缩写的含义&#xff0c;尤其是对于那些不熟悉该缩写的用户。 title 属性的内容提供了缩写的详细说明。当用户将鼠标悬停在缩写上时&#xff0c;会显示一个提示框。 示例&#x…...

【数据分析】R版IntelliGenes用于生物标志物发现的可解释机器学习

禁止商业或二改转载&#xff0c;仅供自学使用&#xff0c;侵权必究&#xff0c;如需截取部分内容请后台联系作者! 文章目录 介绍流程步骤1. 输入数据2. 特征选择3. 模型训练4. I-Genes 评分计算5. 输出结果 IntelliGenesR 安装包1. 特征选择2. 模型训练和评估3. I-Genes 评分计…...

BLEU评分:机器翻译质量评估的黄金标准

BLEU评分&#xff1a;机器翻译质量评估的黄金标准 1. 引言 在自然语言处理(NLP)领域&#xff0c;衡量一个机器翻译模型的性能至关重要。BLEU (Bilingual Evaluation Understudy) 作为一种自动化评估指标&#xff0c;自2002年由IBM的Kishore Papineni等人提出以来&#xff0c;…...

关于easyexcel动态下拉选问题处理

前些日子突然碰到一个问题&#xff0c;说是客户的导入文件模版想支持部分导入内容的下拉选&#xff0c;于是我就找了easyexcel官网寻找解决方案&#xff0c;并没有找到合适的方案&#xff0c;没办法只能自己动手并分享出来&#xff0c;针对Java生成Excel下拉菜单时因选项过多导…...