T天池SQL训练营(五)-窗口函数等
–天池龙珠计划SQL训练营
5.1窗口函数
5.1.1窗口函数概念及基本的使用方法
窗口函数也称为OLAP函数。OLAP 是OnLine AnalyticalProcessing 的简称,意思是对数据库数据进行实时分析处理。
为了便于理解,称之为窗口函数。常规的SELECT语句都是对整张表进行查询,而窗口函数可以让我们有选择的去某一部分数据进行汇总、计算和排序。
窗口函数的通用形式:
<窗口函数> OVER ([PARTITION BY <列名>]ORDER BY <排序用列名>)
[]中的内容可以省略。
窗口函数最关键的是搞明白关键字****PARTITON BY和ORDER BY*****的作用。
PARTITON BY是用来分组,即选择要看哪个窗口,类似于GROUP BY 子句的分组功能,但是PARTITION BY 子句并不具备GROUP BY 子句的汇总功能,并不会改变原始表中记录的行数。
ORDER BY是用来排序,即决定窗口内,是按那种规则(字段)来排序的。
举个栗子:
SELECT product_name,product_type,sale_price,RANK() OVER (PARTITION BY product_typeORDER BY sale_price) AS rankingFROM product
得到的结果是:
我们先忽略生成的新列 - [ranking], 看下原始数据在PARTITION BY 和 ORDER BY 关键字的作用下发生了什么变化。
PARTITION BY 能够设定窗口对象范围。本例中,为了按照商品种类进行排序,我们指定了product_type。即一个商品种类就是一个小的"窗口"。
ORDER BY 能够指定按照哪一列、何种顺序进行排序。为了按照销售单价的升序进行排列,我们指定了sale_price。此外,窗口函数中的ORDER BY与SELECT语句末尾的ORDER BY一样,可以通过关键字ASC/DESC来指定升序/降序。省略该关键字时会默认按照ASC,也就是
升序进行排序。本例中就省略了上述关键字 。
5.2窗口函数种类
大致来说,窗口函数可以分为两类。
一是 将SUM、MAX、MIN等聚合函数用在窗口函数中
二是 RANK、DENSE_RANK等排序用的专用窗口函数
5.2.1专用窗口函数
- **RANK函数 **(英式排序)
计算排序时,如果存在相同位次的记录,则会跳过之后的位次。
例)有 3 条记录排在第 1 位时:1 位、1 位、1 位、4 位……
- DENSE_RANK函数**(中式排序)**
同样是计算排序,即使存在相同位次的记录,也不会跳过之后的位次。
例)有 3 条记录排在第 1 位时:1 位、1 位、1 位、2 位……
- ROW_NUMBER函数
赋予唯一的连续位次。
例)有 3 条记录排在第 1 位时:1 位、2 位、3 位、4 位
运行以下代码:
SELECT product_name,product_type,sale_price,RANK() OVER (ORDER BY sale_price) AS ranking,DENSE_RANK() OVER (ORDER BY sale_price) AS dense_ranking,ROW_NUMBER() OVER (ORDER BY sale_price) AS row_numFROM product
5.2.2聚合函数在窗口函数上的使用
聚合函数在开窗函数中的使用方法和之前的专用窗口函数一样,只是出来的结果是一个累计的聚合函数值。
运行以下代码:
SELECT product_id,product_name,sale_price,SUM(sale_price) OVER (ORDER BY product_id) AS current_sum,AVG(sale_price) OVER (ORDER BY product_id) AS current_avg FROM product;
可以看出,聚合函数结果是,按我们指定的排序,这里是product_id,当前所在行及之前所有的行的合计或均值。即累计到当前行的聚合。
5.3窗口函数的的应用 - 计算移动平均
在上面提到,聚合函数在窗口函数使用时,计算的是累积到当前行的所有的数据的聚合。 实际上,还可以指定更加详细的汇总范围。该汇总范围成为框架(frame)。
语法
<窗口函数> OVER (ORDER BY <排序用列名>ROWS n PRECEDING ) <窗口函数> OVER (ORDER BY <排序用列名>ROWS BETWEEN n PRECEDING AND n FOLLOWING)
PRECEDING(“之前”), 将框架指定为 “截止到之前 n 行”,加上自身行
FOLLOWING(“之后”), 将框架指定为 “截止到之后 n 行”,加上自身行
BETWEEN 1 PRECEDING AND 1 FOLLOWING,将框架指定为 “之前1行” + “之后1行” + “自身”
执行以下代码:
SELECT product_id,product_name,sale_price,AVG(sale_price) OVER (ORDER BY product_idROWS 2 PRECEDING) AS moving_avg,AVG(sale_price) OVER (ORDER BY product_idROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING) AS moving_avg FROM product
执行结果:
注意观察框架的范围。
ROWS 2 PRECEDING:
ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING:
5.3.1窗口函数适用范围和注意事项
- 原则上,窗口函数只能在SELECT子句中使用。
- 窗口函数OVER 中的ORDER BY 子句并不会影响最终结果的排序。其只是用来决定窗口函数按何种顺序计算。
5.4GROUPING运算符
5.4.1ROLLUP - 计算合计及小计
常规的GROUP BY 只能得到每个分类的小计,有时候还需要计算分类的合计,可以用 ROLLUP关键字。
SELECT product_type,regist_date,SUM(sale_price) AS sum_priceFROM productGROUP BY product_type, regist_date WITH ROLLUP
得到的结果为:
这里ROLLUP 对product_type, regist_date两列进行合计汇总。结果实际上有三层聚合,如下图 模块3是常规的 GROUP BY 的结果,需要注意的是衣服 有个注册日期为空的,这是本来数据就存在日期为空的,不是对衣服类别的合计; 模块2和1是 ROLLUP 带来的合计,模块2是对产品种类的合计,模块1是对全部数据的总计。
ROLLUP 可以对多列进行汇总求小计和合计。
练习题
5.1
请说出针对本章中使用的product(商品)表执行如下 SELECT 语句所能得到的结果。
SELECT product_id,product_name,sale_price,MAX(sale_price) OVER (ORDER BY product_id) AS Current_max_priceFROM product
** 答:按照 product_id 升序排列,计算出截⾄当前⾏的最⾼ sale_price 。 **
5.2
继续使用product表,计算出按照登记日期(regist_date)升序进行排列的各日期的销售单价(sale_price)的总额。排序是需要将登记日期为NULL 的“运动 T 恤”记录排在第 1 位(也就是将其看作比其他日期都早)
-- ①regist_date为NULL时,显示“1年1⽉1⽇”。
SELECT regist_date, product_name, sale_price,SUM(sale_price) OVER (ORDER BY COALESCE(regist_date, CAST('0001-01-01'
AS DATE))) AS current_sum_priceFROM Product;-- ②regist_date为NULL时,将该记录放在最前显示。
SELECT regist_date, product_name, sale_price,SUM(sale_price) OVER (ORDER BY regist_date NULLS FIRST) AS
current_sum_priceFROM Product;
5.3
思考题
① 窗口函数不指定PARTITION BY的效果是什么?
答: 窗⼝函数不指定 PARTITION BY 就是针对排序列进⾏全局排序
② 为什么说窗口函数只能在SELECT子句中使用?实际上,在ORDER BY 子句使用系统并不会报错。
答: 本质上是因为 SQL 语句的执⾏顺序。 FROM → WHERE → GROUP BY → HAVING → SELECT → ORDER BY 如果在 WHERE, GROUP BY, HAVING 使⽤了窗⼝函数,就是说提前进⾏了⼀次排序,排序之后再去除 记录、汇总、汇总过滤,第⼀次排序结果就是错误的,没有实际意义。⽽ ORDER BY 语句执⾏顺序在 SELECT 语句之后,⾃然是可以使⽤的。
相关文章:

T天池SQL训练营(五)-窗口函数等
–天池龙珠计划SQL训练营 5.1窗口函数 5.1.1窗口函数概念及基本的使用方法 窗口函数也称为OLAP函数。OLAP 是OnLine AnalyticalProcessing 的简称,意思是对数据库数据进行实时分析处理。 为了便于理解,称之为窗口函数。常规的SELECT语句都是对整张表进…...
道可云元宇宙每日资讯|上海市区块链关键技术攻关专项项目立项清单公布
道可云元宇宙每日简报(2023年12月11日)讯,今日元宇宙新鲜事有: 上海市2023年度区块链关键技术攻关专项项目立项清单公布 据上海市科学技术委员会近日发布通知,上海市2023年度“科技创新行动计划”区块链关键技术攻关…...

大语言模型有什么意义?亚马逊训练自己的大语言模型有什么用?
近年来,大语言模型的崭露头角引起了广泛的关注,成为科技领域的一项重要突破。而在这个领域的巅峰之上,亚马逊云科技一直致力于推动人工智能的发展。那么,作为一家全球科技巨头,亚马逊为何会如此注重大语言模型的研发与…...

RabbitMQ-学习笔记(初识 RabbitMQ)
本篇文章学习于 bilibili黑马 的视频 (狗头保命) 同步通讯 & 异步通讯 (RabbitMQ 的前置知识) 同步通讯:类似打电话,只有对方接受了你发起的请求,双方才能进行通讯, 同一时刻你只能跟一个人打视频电话。异步通讯:类似发信息,…...
SQL Update语句
SQL Update语句 大家好,我是免费搭建查券返利机器人赚佣金就用微赚淘客系统3.0的小编,也是冬天不穿秋裤,天冷也要风度的程序猿! SQL Update语句:数据库操作高招解析 数据库是我们搭建查券返利机器人的重要组成部分&…...

C语言-WIN32API介绍
Windows API 从第一个32位的Windows开始就出现了,就叫做Win32API.它是一个纯C的函数库,就和C标准库一样,使你可以写Windows应用程序过去很多Windows程序是用这个方式做出来的 main()? main()成为C语言的入口函数其实和C语言本身无关&…...

TFIDF、BM25、编辑距离、倒排索引
TFIDF TF刻画了词语t对某篇文档的重要性,IDF刻画了词语t对整个文档集的重要性...

MySQL之DML语句
文章目录 DML语句创建表添加表字段**插入数据**查询数据更新数据替换数据删除数据清除表数据删除表 DML语句 数据操作语言DML(Data Manipulation Langua) 是SQL语言的一个分类,用于对表的数据进行增,删,改,…...
kubernetes集群常用指令
目录 1.1 基础控制指令 1.2 命令实践 1.3 备注 1.1 基础控制指令 # 查看对应资源: 状态 $ kubectl get <SOURCE_NAME> -n <NAMESPACE> -o wide # 查看对应资源: 事件信息 $ kubectl describe <SOURCE_NAME> <SOURCE_NAME_RANDOM_ID> -n <NAMES…...

PyQt6 QTreeView树视图
锋哥原创的PyQt6视频教程: 2024版 PyQt6 Python桌面开发 视频教程(无废话版) 玩命更新中~_哔哩哔哩_bilibili QTreeView类,它是树控件的基类,使用时,必须为其提供一个模型来与之配合。 QTreeView类的常用方法: 方法…...

链表|148. 排序链表
148. 排序链表 题目:给你链表的头结点 head ,请将其按升序排列并返回排序后的链表。 题目链接: 148. 排序链表 时间复杂度:快排 O(n^2) 超出时间限制 class Solution {public ListNode sortList(ListNode head) {if(headnull)…...

如何解决5G基站高能耗问题?
安科瑞 须静燕 截至2023年10月,我国5G基站总数达321.5万个,占全国通信基站总数的28.1%。然而,随着5G基站数量的快速增长,基站的能耗问题也逐渐日益凸显,基站的用电给运营商带来了巨大的电费开支压力,降低5…...

PyTorch实现逻辑回归
最终效果 先看下最终效果: 这里用一条直线把二维平面上不同的点分开。 生成随机数据 #创建训练数据 x torch.rand(10,1)*10 #shape(10,1) y 2*x (5 torch.randn(10,1))#构建线性回归参数 w torch.randn((1))#随机初始化w,要用到自动梯度求导 b …...

什么是FPGA原型验证?
EDA工具的使用主要分为设计、验证和制造三大类。验证工作贯穿整个芯片设计流程,可以说芯片的验证阶段占据了整个芯片开发的大部分时间。从芯片需求定义、功能设计开发到物理实现制造,每个环节都需要进行大量的验证。 现如今验证方法也越来越多ÿ…...

基于VUE3+Layui从头搭建通用后台管理系统(前端篇)十四:系统设置模块相关功能实现
一、本章内容 本章使用已实现的公共组件实现系统管理中的系统设置模块相关功能,包括菜单管理、角色管理、日志管理、用户管理、系统配置、数据字典等。 1. 详细课程地址: 待发布 2. 源码下载地址: 待发布 二、界面预览 三、开发视频 3.1 B站视频地址:...

使用Visual Studio(VS)创建空项目的Win32桌面应用程序【main函数入口变WinMain】
前言 在Visual Studio中直接新建Windows桌面应用程序会有很多多余的代码生成,本文将提供从空项目创建Win32项目的方法,解决新建空项目直接使用WinMain代码编译报错的问题 例如:LNK2019 :无法解析的外部符号 参考博客࿱…...

基于自动化脚本批量上传依赖到nexus内网私服
前言 因为某些原因某些企业希望私服是不能连接外网的,所以需要某些开源依赖需要我们手动导入到nexus中,尽管nexus为我们提供了web页面。但是一个个手动导入显然是一个庞大的工程。 对此我们就不妨基于脚本的方式实现这一过程。 预期效果 笔者本地仓库…...

Linux中ps命令使用指南
目录 1 前言2 ps命令的含义和作用3 ps命令的基本使用4 常用选项参数5 一些常用情景5.1 查看系统中的所有进程(标准语法)5.2 使用 BSD 语法查看系统中的所有进程5.3 打印进程树5.4 获取线程信息5.5 获取安全信息5.6 查看以 root 用户身份(实际…...
PHP开发语言中,网页端常用的标签
在PHP开发语言中,网页端常用的标签包括以下几种: <html>:用于定义整个HTML文档。<head>:用于定义文档的头部,包含元数据、样式表和脚本等。<title>:用于定义文档的标题,显示…...

Java 入门第四篇 集合
Java 入门第四篇 集合 一,什么是集合 在Java中,集合(Collection)是一种用于存储和操作一组对象的容器类。它提供了一系列的方法和功能,用于方便地管理和操作对象的集合。集合框架是Java中非常重要和常用的一部分&…...

【大模型RAG】拍照搜题技术架构速览:三层管道、两级检索、兜底大模型
摘要 拍照搜题系统采用“三层管道(多模态 OCR → 语义检索 → 答案渲染)、两级检索(倒排 BM25 向量 HNSW)并以大语言模型兜底”的整体框架: 多模态 OCR 层 将题目图片经过超分、去噪、倾斜校正后,分别用…...

如何在看板中体现优先级变化
在看板中有效体现优先级变化的关键措施包括:采用颜色或标签标识优先级、设置任务排序规则、使用独立的优先级列或泳道、结合自动化规则同步优先级变化、建立定期的优先级审查流程。其中,设置任务排序规则尤其重要,因为它让看板视觉上直观地体…...

如何将联系人从 iPhone 转移到 Android
从 iPhone 换到 Android 手机时,你可能需要保留重要的数据,例如通讯录。好在,将通讯录从 iPhone 转移到 Android 手机非常简单,你可以从本文中学习 6 种可靠的方法,确保随时保持连接,不错过任何信息。 第 1…...
Python爬虫(二):爬虫完整流程
爬虫完整流程详解(7大核心步骤实战技巧) 一、爬虫完整工作流程 以下是爬虫开发的完整流程,我将结合具体技术点和实战经验展开说明: 1. 目标分析与前期准备 网站技术分析: 使用浏览器开发者工具(F12&…...

Module Federation 和 Native Federation 的比较
前言 Module Federation 是 Webpack 5 引入的微前端架构方案,允许不同独立构建的应用在运行时动态共享模块。 Native Federation 是 Angular 官方基于 Module Federation 理念实现的专为 Angular 优化的微前端方案。 概念解析 Module Federation (模块联邦) Modul…...
【python异步多线程】异步多线程爬虫代码示例
claude生成的python多线程、异步代码示例,模拟20个网页的爬取,每个网页假设要0.5-2秒完成。 代码 Python多线程爬虫教程 核心概念 多线程:允许程序同时执行多个任务,提高IO密集型任务(如网络请求)的效率…...

如何理解 IP 数据报中的 TTL?
目录 前言理解 前言 面试灵魂一问:说说对 IP 数据报中 TTL 的理解?我们都知道,IP 数据报由首部和数据两部分组成,首部又分为两部分:固定部分和可变部分,共占 20 字节,而即将讨论的 TTL 就位于首…...

Unsafe Fileupload篇补充-木马的详细教程与木马分享(中国蚁剑方式)
在之前的皮卡丘靶场第九期Unsafe Fileupload篇中我们学习了木马的原理并且学了一个简单的木马文件 本期内容是为了更好的为大家解释木马(服务器方面的)的原理,连接,以及各种木马及连接工具的分享 文件木马:https://w…...

打手机检测算法AI智能分析网关V4守护公共/工业/医疗等多场景安全应用
一、方案背景 在现代生产与生活场景中,如工厂高危作业区、医院手术室、公共场景等,人员违规打手机的行为潜藏着巨大风险。传统依靠人工巡查的监管方式,存在效率低、覆盖面不足、判断主观性强等问题,难以满足对人员打手机行为精…...

阿里云Ubuntu 22.04 64位搭建Flask流程(亲测)
cd /home 进入home盘 安装虚拟环境: 1、安装virtualenv pip install virtualenv 2.创建新的虚拟环境: virtualenv myenv 3、激活虚拟环境(激活环境可以在当前环境下安装包) source myenv/bin/activate 此时,终端…...