安装LLaMA-Factory微调chatglm3,修改自我认知
安装git clone https://github.com/hiyouga/LLaMA-Factory.git
conda create -n llama_factory python=3.10
conda activate llama_factory
cd LLaMA-Factory
pip install -r requirements.txt
之后运行
单卡训练,
CUDA_VISIBLE_DEVICES=0 python src/train_web.py,按如下配置


demo_tran.sh
CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \--stage sft \--model_name_or_path /data/models/llm/chatglm3-lora/ \--do_train \--overwrite_output_dir \--dataset self_cognition \--template chatglm3 \--finetuning_type lora \--lora_target query_key_value \--output_dir export_chatglm3 \--overwrite_cache \--per_device_train_batch_size 4 \--gradient_accumulation_steps 4 \--lr_scheduler_type cosine \--logging_steps 10 \--save_steps 1000 \--learning_rate 1e-3 \--num_train_epochs 10.0 \--plot_loss \--fp16
export_model.sh
python src/export_model.py \--model_name_or_path /data/models/llm/chatglm3-lora/ \--template chatglm3 \--finetuning_type lora \--checkpoint_dir /data/projects/LLaMA-Factory/export_chatglm3 \--export_dir lora_merge_chatglm3
cli_demo.sh
python src/cli_demo.py \--model_name_or_path /data/models/llm/chatglm3-lora/ \--template default \--finetuning_type lora
注意合并模型的时候,最后复制chatglm3的tokenizer.model和tokenizer_config.json到合并后模型覆盖之后,要修改

不覆盖会有这个错误,
Use DeepSpeed方法
deepspeed --num_gpus 3 --master_port=9901 src/train_bash.py \--deepspeed ds_config.json \--stage sft \--model_name_or_path /media/cys/65F33762C14D581B/chatglm2-6b \--do_train True \--finetuning_type lora \--template chatglm2 \--flash_attn False \--shift_attn False \--dataset_dir data \--dataset self_cognition,sharegpt_zh \--cutoff_len 1024 \--learning_rate 0.001 \--num_train_epochs 10.0 \--max_samples 1000 \--per_device_train_batch_size 4 \--gradient_accumulation_steps 4 \--lr_scheduler_type cosine \--max_grad_norm 1.0 \--logging_steps 10 \--save_steps 1000 \--warmup_steps 0 \--neft_alpha 0 \--train_on_prompt False \--upcast_layernorm False \--lora_rank 8 \--lora_dropout 0.1 \--lora_target query_key_value \--resume_lora_training True \--output_dir saves/ChatGLM2-6B-Chat/lora/train_2023-12-12-23-26-49 \--fp16 True \--plot_loss True
ds_config.json的格式下面的:
{"train_batch_size": "auto","train_micro_batch_size_per_gpu": "auto","gradient_accumulation_steps": "auto","gradient_clipping": "auto","zero_allow_untested_optimizer": true,"fp16": {"enabled": "auto","loss_scale": 0,"initial_scale_power": 16,"loss_scale_window": 1000,"hysteresis": 2,"min_loss_scale": 1}, "zero_optimization": {"stage": 2,"allgather_partitions": true,"allgather_bucket_size": 5e8,"reduce_scatter": true,"reduce_bucket_size": 5e8,"overlap_comm": false,"contiguous_gradients": true}
}
跑成功的效果图:

如果出现下面 这个问题,
[E ProcessGroupNCCL.cpp:916] [Rank 3] NCCL watchdog thread terminated with exception: CUDA error: the launch timed out and was terminated CUDA kernel errors might be asynchronously reported at some other API call, so the stacktrace below might be incorrect. For debugging consider passing CUDA_LAUNCH_BLOCKING=1. Compile with `TORCH_USE_CUDA_DSA` to enable device-side assertions.
可能原因是显卡坏了或者显卡不是同一个型号!
相关文章:
安装LLaMA-Factory微调chatglm3,修改自我认知
安装git clone https://github.com/hiyouga/LLaMA-Factory.git conda create -n llama_factory python3.10 conda activate llama_factory cd LLaMA-Factory pip install -r requirements.txt 之后运行 单卡训练, CUDA_VISIBLE_DEVICES0 python src/train_web.py…...
以太网协议与DNS
以太网协议 以太网协议DNS 以太网协议 以太网用于在计算机和其他网络设备之间传输数据,以太网既包含了数据链路层的内容,也包含了物理层的内容. 以太网数据报: 其中目的IP和源IP不是网络层的目的IP和源IP,而是mac地址.网络层的主要负责是整体的转发过程,数据链路层负责的是局…...
Spring Boot的日志
打印日志 打印日志的步骤: • 在程序中得到日志对象. • 使用日志对象输出要打印的内容 在程序中得到日志对象 在程序中获取日志对象需要使用日志工厂LoggerFactory,代码如下: package com.example.demo;import org.slf4j.Logger; import org.slf4j.LoggerFactory;public c…...
Cisco Packet Tracer配置命令——交换机篇
交换机VLAN配置 在简单的网络环境中,当交换机配置完端口后,即可直接应用,但若在复杂或规模较大的网络环境中,一般还要进行VLAN的规划,因此在交换机上还需进行 VLAN 的配置。交换机的VLAN配置工作主要有VLAN的建立与删…...
python单例模式
设计模式:单例模式(Singleton Pattern)。单例模式确保一个类只有一个实例,并提供一个全局访问点来获取这个实例。 class Singleton:_instance Nonedef __new__(cls):if cls._instance is None:cls._instance super().__new__(cl…...
环境保护:人类生存的最后机会
随着科技的进步和人类文明的不断发展,地球上的自然资源也在以惊人的速度消耗殆尽。人类对于环境的无止境的掠夺,使得我们的地球正面临着前所未有的环境危机。环境污染、全球变暖、大规模灭绝等问题不断困扰着我们,似乎指向了人类生存的最后机…...
头歌-Python 基础
第1关:建模与仿真 1、 建模过程,通常也称为数学优化建模(Mathematical Optimization Modeling),不同之处在于它可以确定特定场景的特定的、最优化或最佳的结果。这被称为诊断一个结果,因此命名为▁▁▁。 填空1答案:决…...
C++数据结构:B树
目录 一. 常见的搜索结构 二. B树的概念 三. B树节点的插入和遍历 3.1 插入B树节点 3.2 B树遍历 四. B树和B*树 4.1 B树 4.2 B*树 五. B树索引原理 5.1 索引概述 5.2 MyISAM 5.3 InnoDB 六. 总结 一. 常见的搜索结构 表示1为在实际软件开发项目中,常用…...
【07】ES6:对象的扩展
一、对象字面量语法扩展 1、属性简写 当属性名称和属性值的变量名称相同时,可以省略冒号的变量名称。 const foo barconst baz { foo } // 等同于 const baz { foo: foo }baz // { foo: bar }function f(x, y) {return { x, y } } // 等同于 function f(x, y)…...
flink找不到隐式项
增加 import org.apache.flink.streaming.api.scala._ 即可...
【网络编程】-- 04 UDP
网络编程 6 UDP 6.1 初识Tomcat 服务端 自定义 STomcat S 客户端 自定义 C浏览器 B 6.2 UDP 6.2.1 udp实现发送消息 接收端: package com.duo.lesson03;import java.net.DatagramPacket; import java.net.DatagramSocket; import java.net.SocketExceptio…...
【脚本】图片-音视频-压缩文件处理
音视频处理 一,图片操作1,转换图片格式2,多张图片合成视频 二,音频操作1,转换音频格式2,分割音频为多段3,合成多段音频 三,视频操作1,转换视频格式2,提取视频…...
跨品牌的手机要怎样相互投屏?iPhone和iPad怎么相互投屏?
选择买不同品牌的手机是基于品牌声誉、产品特点、价格和性价比等多个因素的综合考虑。每个人的需求和偏好不同,选择适合自己的手机品牌是一个个人化的决策。 一些品牌可能更加注重摄影功能,而其他品牌可能更加注重性能和速度。选择不同品牌的手机可以根据…...
图像特征提取-角点
角点特征 大多数人都玩过拼图游戏。首先拿到完整图像的碎片,然后把这些碎片以正确的方式排列起来从而重建这幅图像。如果把拼图游戏的原理写成计算机程序,那计算机就也会玩拼图游戏了。 在拼图时,我们要寻找一些唯一的特征,这些…...
N26:构建无缝体验的平台工程之路-Part 2
在第一部分,我们介绍了 N26 团队为达成 “在 Day 1 实现轻松部署” 的目标而设定的战略规划和开发人员体验图,在这一部分,我们将带您了解该团队如何构建最简可行平台以及该平台如何运作。 01 计划构建最简可行平台 我们通…...
【Hadoop-Distcp】通过Distcp的方式进行两个HDFS集群间的数据迁移
【Hadoop-Distcp】通过Distcp的方式进行两个HDFS集群间的数据迁移 1)Distcp 工具简介及参数说明2)Shell 脚本 1)Distcp 工具简介及参数说明 【Hadoop-Distcp】工具简介及参数说明 2)Shell 脚本 应用场景: 两个实时集…...
【Linux】使用Bash和GNU Parallel并行解压缩文件
介绍 在本教程中,我们将学习如何使用Bash脚本和GNU Parallel实现高效并行解压缩多个文件。这种方法在处理大量文件时可以显著加快提取过程。 先决条件 确保系统上已安装以下内容: BashGNU Parallel 你可以使用以下命令在不同Linux系统上安装它们&am…...
T天池SQL训练营(五)-窗口函数等
–天池龙珠计划SQL训练营 5.1窗口函数 5.1.1窗口函数概念及基本的使用方法 窗口函数也称为OLAP函数。OLAP 是OnLine AnalyticalProcessing 的简称,意思是对数据库数据进行实时分析处理。 为了便于理解,称之为窗口函数。常规的SELECT语句都是对整张表进…...
道可云元宇宙每日资讯|上海市区块链关键技术攻关专项项目立项清单公布
道可云元宇宙每日简报(2023年12月11日)讯,今日元宇宙新鲜事有: 上海市2023年度区块链关键技术攻关专项项目立项清单公布 据上海市科学技术委员会近日发布通知,上海市2023年度“科技创新行动计划”区块链关键技术攻关…...
大语言模型有什么意义?亚马逊训练自己的大语言模型有什么用?
近年来,大语言模型的崭露头角引起了广泛的关注,成为科技领域的一项重要突破。而在这个领域的巅峰之上,亚马逊云科技一直致力于推动人工智能的发展。那么,作为一家全球科技巨头,亚马逊为何会如此注重大语言模型的研发与…...
多云管理“拦路虎”:深入解析网络互联、身份同步与成本可视化的技术复杂度
一、引言:多云环境的技术复杂性本质 企业采用多云策略已从技术选型升维至生存刚需。当业务系统分散部署在多个云平台时,基础设施的技术债呈现指数级积累。网络连接、身份认证、成本管理这三大核心挑战相互嵌套:跨云网络构建数据…...
web vue 项目 Docker化部署
Web 项目 Docker 化部署详细教程 目录 Web 项目 Docker 化部署概述Dockerfile 详解 构建阶段生产阶段 构建和运行 Docker 镜像 1. Web 项目 Docker 化部署概述 Docker 化部署的主要步骤分为以下几个阶段: 构建阶段(Build Stage):…...
视频字幕质量评估的大规模细粒度基准
大家读完觉得有帮助记得关注和点赞!!! 摘要 视频字幕在文本到视频生成任务中起着至关重要的作用,因为它们的质量直接影响所生成视频的语义连贯性和视觉保真度。尽管大型视觉-语言模型(VLMs)在字幕生成方面…...
数据链路层的主要功能是什么
数据链路层(OSI模型第2层)的核心功能是在相邻网络节点(如交换机、主机)间提供可靠的数据帧传输服务,主要职责包括: 🔑 核心功能详解: 帧封装与解封装 封装: 将网络层下发…...
SpringBoot+uniapp 的 Champion 俱乐部微信小程序设计与实现,论文初版实现
摘要 本论文旨在设计并实现基于 SpringBoot 和 uniapp 的 Champion 俱乐部微信小程序,以满足俱乐部线上活动推广、会员管理、社交互动等需求。通过 SpringBoot 搭建后端服务,提供稳定高效的数据处理与业务逻辑支持;利用 uniapp 实现跨平台前…...
华硕a豆14 Air香氛版,美学与科技的馨香融合
在快节奏的现代生活中,我们渴望一个能激发创想、愉悦感官的工作与生活伙伴,它不仅是冰冷的科技工具,更能触动我们内心深处的细腻情感。正是在这样的期许下,华硕a豆14 Air香氛版翩然而至,它以一种前所未有的方式&#x…...
高效线程安全的单例模式:Python 中的懒加载与自定义初始化参数
高效线程安全的单例模式:Python 中的懒加载与自定义初始化参数 在软件开发中,单例模式(Singleton Pattern)是一种常见的设计模式,确保一个类仅有一个实例,并提供一个全局访问点。在多线程环境下,实现单例模式时需要注意线程安全问题,以防止多个线程同时创建实例,导致…...
代码规范和架构【立芯理论一】(2025.06.08)
1、代码规范的目标 代码简洁精炼、美观,可持续性好高效率高复用,可移植性好高内聚,低耦合没有冗余规范性,代码有规可循,可以看出自己当时的思考过程特殊排版,特殊语法,特殊指令,必须…...
如何应对敏捷转型中的团队阻力
应对敏捷转型中的团队阻力需要明确沟通敏捷转型目的、提升团队参与感、提供充分的培训与支持、逐步推进敏捷实践、建立清晰的奖励和反馈机制。其中,明确沟通敏捷转型目的尤为关键,团队成员只有清晰理解转型背后的原因和利益,才能降低对变化的…...
Unity中的transform.up
2025年6月8日,周日下午 在Unity中,transform.up是Transform组件的一个属性,表示游戏对象在世界空间中的“上”方向(Y轴正方向),且会随对象旋转动态变化。以下是关键点解析: 基本定义 transfor…...
