智能优化算法应用:基于萤火虫算法3D无线传感器网络(WSN)覆盖优化 - 附代码
智能优化算法应用:基于萤火虫算法3D无线传感器网络(WSN)覆盖优化 - 附代码
文章目录
- 智能优化算法应用:基于萤火虫算法3D无线传感器网络(WSN)覆盖优化 - 附代码
- 1.无线传感网络节点模型
- 2.覆盖数学模型及分析
- 3.萤火虫算法
- 4.实验参数设定
- 5.算法结果
- 6.参考文献
- 7.MATLAB代码
摘要:本文主要介绍如何用萤火虫算法进行3D无线传感器网(WSN)覆盖优化。
1.无线传感网络节点模型
本文主要基于0/1模型,进行寻优。在二维平面上传感器节点的感知范围是一个以节点为圆心,半径为 R n R_n Rn的圆形区域,该圆形区域通常被称为该节点的“感知圆盘”, R n R_n Rn称为传感器节点的感知半径,感知半径与节点内置传感器件的物理特性有关,假设节点 n n n的位置坐标为 ( x n , y n , z n ) (x_n,y_n,z_n) (xn,yn,zn)在0-1感知模型中,对于平面上任意一点 p ( x p , y p , z p ) p(x_p,y_p,z_p) p(xp,yp,zp),则节点 n n n监测到区域内点 p p p的事件发生概率为:
P r ( n , p ) = { 1 , d ( n , p ) ≤ R n 0 , e s l e (1) P_r(n,p)=\begin{cases}1, \,d(n,p)\leq R_n\\ 0,\, esle \end{cases}\tag{1} Pr(n,p)={1,d(n,p)≤Rn0,esle(1)
其中 d ( n , p ) = ( x n − x p ) 2 + ( y n − y p ) 2 + ( z n − z p ) 2 d(n,p)=\sqrt{(x_n-x_p)^2+(y_n-y_p)^2 + (z_n-z_p)^2} d(n,p)=(xn−xp)2+(yn−yp)2+(zn−zp)2为点和之间的欧式距离。
2.覆盖数学模型及分析
现假定目标监测区域为二维平面,在区域 A r e a Area Area上投放同型结构传感器节点的数目为N,每个节点的位置坐标值假设已被初始化赋值,且节点的感知半径r。传感器节点集则表示为:
N o d e { x 1 , . . . , x N } (2) Node\{x_1,...,x_N\} \tag{2} Node{x1,...,xN}(2)
其中 n o d e i = { x i , y i , z i , r } node_i=\{x_i,y_i,z_i,r\} nodei={xi,yi,zi,r},表示以节点 ( x i , y i , z i ) (x_i,y_i,z_i) (xi,yi,zi)为圆心,r为监测半径的球,假定监测区域 A r e a Area Area被数字化离散为 m ∗ n ∗ l m*n*l m∗n∗l个空间点,空间点的坐标为 ( x , y , z ) (x,y,z) (x,y,z),目标点与传感器节点间的距离为:
d ( n o d e i , p ) = ( x i − x ) 2 + ( y i − y ) 2 + ( z i − z ) 2 (3) d(node_i,p)=\sqrt{(x_i-x)^2+(y_i-y)^2 + (z_i-z)^2}\tag{3} d(nodei,p)=(xi−x)2+(yi−y)2+(zi−z)2(3)
目标区域内点被传感器节点所覆盖的事件定义为 c i c_i ci。则该事件发生的概率 P c i P{c_i} Pci即为点 ( x , y , z ) (x,y,z) (x,y,z)被传感器节点 n o d e i node_i nodei所覆盖的概率:
P c o v ( x , y , z , n o d e i ) = { 1 , i f d ( n o d e i , p ) ≤ r 0 , e s l e (4) P_{cov}(x,y,z,node_i)=\begin{cases}1, if\,d(node_i,p)\leq r\\ 0,\, esle \end{cases}\tag{4} Pcov(x,y,z,nodei)={1,ifd(nodei,p)≤r0,esle(4)
我们将所有的传感器节点在目标监测环境中的区域覆盖率 C o v e r R a t i o CoverRatio CoverRatio定义为传感器节点集的覆盖面积与监测区域的面积之比,如公式所示:
C o v e r R a t i o = ∑ P c o v m ∗ n ∗ l (5) CoverRatio = \frac{\sum P_{cov}}{m*n*l}\tag{5} CoverRatio=m∗n∗l∑Pcov(5)
那我们的最终目标就是找到一组节点使得覆盖率最大。
3.萤火虫算法
萤火虫算法原理请参考:https://blog.csdn.net/u011835903/article/details/108492552
萤火虫算法是寻找最小值。于是适应度函数定义为未覆盖率最小,即覆盖率最大。如下:
f u n = a r g m i n ( 1 − C o v e r R a t i o ) = a r g m i n ( 1 − ∑ P c o v m ∗ n ∗ l ) (6) fun = argmin(1 - CoverRatio) = argmin(1-\frac{\sum P_{cov}}{m*n*l}) \tag{6} fun=argmin(1−CoverRatio)=argmin(1−m∗n∗l∑Pcov)(6)
4.实验参数设定
无线传感器覆盖参数设定如下:
%% 设定WNS覆盖参数,
%% 默认输入参数都是整数,如果想定义小数,请自行乘以系数变为整数再做转换。
%% 比如范围1*1,R=0.03可以转换为100*100,R=3;
%区域范围为AreaX*AreaY*AreaZ
AreaX = 100;
AreaY = 100;
AreaZ = 100;
N = 20 ;%覆盖节点数
R = 15;%通信半径
萤火虫算法参数如下:
%% 设定萤火虫优化参数
pop=30; % 种群数量
Max_iteration=30; %设定最大迭代次数
lb = ones(1,3*N);
ub = [AreaX.*ones(1,N),AreaY.*ones(1,N),AreaZ.*ones(1,N)];
dim = 3*N;%维度为3N,N个坐标点
5.算法结果


从结果来看,覆盖率在优化过程中不断上升。表明萤火虫算法对覆盖优化起到了优化的作用。
6.参考文献
[1] 史朝亚. 基于PSO算法无线传感器网络覆盖优化的研究[D]. 南京理工大学.
7.MATLAB代码
相关文章:
智能优化算法应用:基于萤火虫算法3D无线传感器网络(WSN)覆盖优化 - 附代码
智能优化算法应用:基于萤火虫算法3D无线传感器网络(WSN)覆盖优化 - 附代码 文章目录 智能优化算法应用:基于萤火虫算法3D无线传感器网络(WSN)覆盖优化 - 附代码1.无线传感网络节点模型2.覆盖数学模型及分析3.萤火虫算法4.实验参数设定5.算法结果6.参考文…...
MacOS多屏状态栏位置不固定,程序坞不小心跑到副屏
目录 方式一:通过系统设置方式二:鼠标切换 MacOS多屏状态栏位置不固定,程序坞不小心跑到副屏 方式一:通过系统设置 先切换到左边 再切换到底部 就能回到主屏了 方式二:鼠标切换 我的两个屏幕放置位置如下 鼠标在…...
Python:pipdeptree 语法介绍
相信大家在按照一些包的时候经常会碰到版本不兼容,但是又不知道版本之间的依赖关系,今天给大家介绍一个工具:pipdeptree pipdeptree 是一个 Python 包,用于查看已安装的 pip 包及其依赖关系。它以树形结构展示包之间的依赖关系&am…...
【问题处理】—— lombok 的 @Data 大小写区分不敏感
问题描述 今天在项目本地编译的时候,发现有个很奇怪的问题,一直提示某位置找不到符号, 但是实际在Idea中显示确实正常的,一开始以为又是IDEA的故障,所以重启了IDEA,并执行了mvn clean然后重新编译。但是问…...
跟着我学Python基础篇:08.集合和字典
往期文章 跟着我学Python基础篇:01.初露端倪 跟着我学Python基础篇:02.数字与字符串编程 跟着我学Python基础篇:03.选择结构 跟着我学Python基础篇:04.循环 跟着我学Python基础篇:05.函数 跟着我学Python基础篇&#…...
Tomcat部署(图片和HTML等)静态资源时遇到的问题
文章目录 Tomcat部署静态资源问题图中HTML代码启动Tomcat后先确认Tomcat是否启动成功 Tomcat部署静态资源问题 今天,有人突然跟我提到,使用nginx部署静态资源,如图片。可以直接通过url地址访问,为什么他的Tomcat不能通过这样的方…...
在接触新的游戏引擎的时候,如何能快速地熟悉并开发出一款新游戏?
引言 大家好,今天分享点个人经验。 有一定编程经验或者游戏开发经验的小伙伴,在接触新的游戏引擎的时候,如何能快速地熟悉并开发出一款新游戏? 利用现成开发框架。 1.什么是开发框架? 开发框架,顾名思…...
计网 - TCP四次挥手原理全曝光:深度解析与实战演示
文章目录 Pre导图过程分析抓包实战第一次挥手 【FIN ACK】第二次挥手 【ACK】第三次挥手 【FINACK】第四次挥手 【ACK】 小结 Pre 计网 - 传输层协议 TCP:TCP 为什么握手是 3 次、挥手是 4 次? 计网 - TCP三次握手原理全曝光:深度解析与实战…...
个人养老金知多少?
个人养老金政策你了解吗?税优政策你知道吗?你会计算能退多少税吗?… 点这里看一看...
gpt3、gpt2与gpt1区别
参考:深度学习:GPT1、GPT2、GPT-3_HanZee的博客-CSDN博客 Zero-shot Learning / One-shot Learning-CSDN博客 Zero-shot(零次学习)简介-CSDN博客 GPT1、GPT2、GPT3、InstructGPT-CSDN博客 目录 gpt2与gpt1区别: gp…...
PyQt6 QDateEdit日期控件
锋哥原创的PyQt6视频教程: 2024版 PyQt6 Python桌面开发 视频教程(无废话版) 玩命更新中~_哔哩哔哩_bilibili2024版 PyQt6 Python桌面开发 视频教程(无废话版) 玩命更新中~共计39条视频,包括:2024版 PyQt6 Python桌面开发 视频教程(无废话…...
【无线网络技术】——无线城域网(学习笔记)
📖 前言:无线城域网(WMAN)是指在地域上覆盖城市及其郊区范围的分布节点之间传输信息的本地分配无线网络。能实现语音、数据、图像、多媒体、IP等多业务的接入服务。其覆盖范围的典型值为3~5km,点到点链路的覆盖可以高达…...
RK3568平台 OTA升级原理
一.前言 在迅速变化和发展的物联网市场,新的产品需求不断涌现,因此对于智能硬件设备的更新需求就变得空前高涨,设备不再像传统设备一样一经出售就不再变更。为了快速响应市场需求,一个技术变得极为重要,即OTA空中下载…...
mysql迁移步骤
MySQL迁移是指将MySQL数据库从一台服务器迁移到另一台服务器。这可能是因为您需要升级服务器、增加存储空间、提高性能或改变数据库架构。 以下是MySQL迁移的一般步骤: 以上是MySQL迁移的一般步骤,具体步骤可能因您的环境和需求而有所不同。在进行迁移之…...
计算机网络应用层(期末、考研)
计算机网络总复习链接🔗 目录 DNS域名服务器域名解析过程分类递归查询(给根域名服务器造成的负载过大,实际中几乎不用)迭代查询 域名缓存(了解即可)完整域名解析过程采用UDP服务 FTP控制连接与数据连接 电…...
Jenkins离线安装部署教程简记
前言 在上一篇文章基于Gitee实现Jenkins自动化部署SpringBoot项目中,我们了解了如何完成基于Jenkins实现自动化部署。 对于某些公司服务器来说,是不可以连接外网的,所以笔者专门整理了一篇文章总结一下,如何基于内网直接部署Jen…...
如果一个嵌套类需要在单个方法之外仍然是可见,或者它太长,不适合放在方法内部,就应该使用成员类。
当一个嵌套类需要在单个方法之外仍然是可见,或者它太长不适合放在方法内部时,可以考虑使用成员类(成员内部类)。成员类是声明在类的内部但不是在方法内部的类,可以访问外部类的实例成员。 以下是一个示例,…...
Vue3 中的 Proxy--读懂ES6中的Proxy
Proxy用于创建一个对象的代理,从而实现基本操作的拦截和自定义(如属性查找、赋值、枚举、函数调用等) 1.用法 Proxy为 构造函数,用来生成 Proxy实例 var proxy new Proxy(target, handler)参数 target表示所要拦截的目标对象…...
zk_dubbo
图灵面试笔记 zk dubbo spi dubbo 文章 dubbo与spring整合之Service、Reference注解处理过程 JAVA备忘录...
Windows 安全基础——NetBIOS篇
Windows 安全基础——NetBIOS篇 1. NetBIOS简介 NetBIOS(Network Basic Input/Output System, 网络基本输入输出系统)是一种接入服务网络的接口标准。主机系统通过WINS服务、广播及lmhosts文件多种模式,把NetBIOS名解析对应的IP地址…...
Appium+python自动化(十六)- ADB命令
简介 Android 调试桥(adb)是多种用途的工具,该工具可以帮助你你管理设备或模拟器 的状态。 adb ( Android Debug Bridge)是一个通用命令行工具,其允许您与模拟器实例或连接的 Android 设备进行通信。它可为各种设备操作提供便利,如安装和调试…...
【大模型RAG】Docker 一键部署 Milvus 完整攻略
本文概要 Milvus 2.5 Stand-alone 版可通过 Docker 在几分钟内完成安装;只需暴露 19530(gRPC)与 9091(HTTP/WebUI)两个端口,即可让本地电脑通过 PyMilvus 或浏览器访问远程 Linux 服务器上的 Milvus。下面…...
汽车生产虚拟实训中的技能提升与生产优化
在制造业蓬勃发展的大背景下,虚拟教学实训宛如一颗璀璨的新星,正发挥着不可或缺且日益凸显的关键作用,源源不断地为企业的稳健前行与创新发展注入磅礴强大的动力。就以汽车制造企业这一极具代表性的行业主体为例,汽车生产线上各类…...
定时器任务——若依源码分析
分析util包下面的工具类schedule utils: ScheduleUtils 是若依中用于与 Quartz 框架交互的工具类,封装了定时任务的 创建、更新、暂停、删除等核心逻辑。 createScheduleJob createScheduleJob 用于将任务注册到 Quartz,先构建任务的 JobD…...
测试markdown--肇兴
day1: 1、去程:7:04 --11:32高铁 高铁右转上售票大厅2楼,穿过候车厅下一楼,上大巴车 ¥10/人 **2、到达:**12点多到达寨子,买门票,美团/抖音:¥78人 3、中饭&a…...
Mac软件卸载指南,简单易懂!
刚和Adobe分手,它却总在Library里给你写"回忆录"?卸载的Final Cut Pro像电子幽灵般阴魂不散?总是会有残留文件,别慌!这份Mac软件卸载指南,将用最硬核的方式教你"数字分手术"࿰…...
Spring Boot+Neo4j知识图谱实战:3步搭建智能关系网络!
一、引言 在数据驱动的背景下,知识图谱凭借其高效的信息组织能力,正逐步成为各行业应用的关键技术。本文聚焦 Spring Boot与Neo4j图数据库的技术结合,探讨知识图谱开发的实现细节,帮助读者掌握该技术栈在实际项目中的落地方法。 …...
【JavaWeb】Docker项目部署
引言 之前学习了Linux操作系统的常见命令,在Linux上安装软件,以及如何在Linux上部署一个单体项目,大多数同学都会有相同的感受,那就是麻烦。 核心体现在三点: 命令太多了,记不住 软件安装包名字复杂&…...
GC1808高性能24位立体声音频ADC芯片解析
1. 芯片概述 GC1808是一款24位立体声音频模数转换器(ADC),支持8kHz~96kHz采样率,集成Δ-Σ调制器、数字抗混叠滤波器和高通滤波器,适用于高保真音频采集场景。 2. 核心特性 高精度:24位分辨率,…...
React---day11
14.4 react-redux第三方库 提供connect、thunk之类的函数 以获取一个banner数据为例子 store: 我们在使用异步的时候理应是要使用中间件的,但是configureStore 已经自动集成了 redux-thunk,注意action里面要返回函数 import { configureS…...
