当前位置: 首页 > news >正文

[Linformer]论文实现:Linformer: Self-Attention with Linear Complexity

文章目录

    • 一、完整代码
    • 二、论文解读
      • 2.1 介绍
      • 2.2 Self-Attention is Low Rank
      • 2.3 模型架构
      • 2.4 结果
    • 三、整体总结

论文:Linformer: Self-Attention with Linear Complexity
作者:Sinong Wang, Belinda Z. Li, Madian Khabsa, Han Fang, Hao Ma
时间:2020

模型结构较于简单,证明有点难,有时间可以做一下文章的证明分析;

一、完整代码

这里我们使用python代码进行实现

# 完整代码在这里
# 模型结构较于简单,有时间再弄

二、论文解读

2.1 介绍

这是一篇介绍transformer的优化模型的论文,其对普通的transformer模型进行了优化,把时间复杂度和空间复杂度都从 O ( n 2 ) O(n^2) O(n2)降低为了 O ( n ) O(n) O(n);论文推出的模型叫Linformer,其主要思想利用到了两个思想,一个是the distributional Johnson–Lindenstrauss lemma, the Eckart–Young–Mirsky Theorem;这两个思想一同证实了利用降维去构造一个低秩矩阵来降低复杂度的可行性;

为什么要改进transformer模型:计算量太大,价格昂贵,操作复杂度为 O ( n 2 ) O(n^2) O(n2);部署困难,并不容易进行推理;

目前的其他降维方法Sparse transformer利用Sparse matrixReformer利用locally-sensitive hashing (LSH),并且只有序列长度大于2048的时候才有用;

不同模型架构方法对比如下:

相比于图中的模型,Linformer在复杂度和操作上是最佳的;

在这里提一下Transformer的自注意力机制,这都是非常基础了;

提高transformer的效率有很多种办法,下面简单介绍几种:

Mixed Precision:使用半精度或混合精度表示,即采用量化的方式加快计算;

Knowledge Distillation:和DistillBERT一样,利用学生模型去学习教师模型的分布预测;

Sparse Attention:只计算对角线部分的注意力权重;

该技术通过在上下文映射矩阵P中添加稀疏性来提高自我注意的效率。例如,sparse transformer只计算矩阵P的对角线附近的Pij(而不是所有的Pij)。同时,block-wise self-attentionP划分为多个块,只计算所选块内的Pij。然而,这些技术也遭受了很大的性能下降,同时只有有限的额外加速,即下降2%,加速20%。

LSH Attention:操作复杂,有效果但是有限制;

Locally-sensitive hashing(LSH)注意在计算点积注意时采用了多轮哈希方案,在理论上将自注意复杂度降低到O(n log(n))。然而,在实践中,它们的复杂度项有一个很大的常数1282,并且只有当序列长度非常长时,它才比普通的变压器更有效。

Improving Optimizer Efficiency:没注意过,不出名;

Microbatching将一批分成小的微批(可以放入内存),然后通过梯度积累分别向前和向后运行。Gradient checkpointing仅通过缓存一个图层子集的激活来节省内存。在从最新的检查点进行反向传播期间,将重新计算未缓存的激活。这两种技术都可以利用时间来换取内存,而且都不能加快推理的速度。

2.2 Self-Attention is Low Rank

如标题,这节主要证明了self-attention其实是一个低秩矩阵;

作者使用了两个预训练的transformer模型,RoBERTa-baseRoBERTa-large,前者是12层的模型,后者是24层的模型;

作者通过对每一层的特征值进行分解,然后做图如下,纵坐标代表归一化的累积特征值,由于序列长度是512维的,所以一个有512个特征值;

通过观察发现,当取前面128个较大的特征值时,累积特征值已经到达了95%,通过主成分可以直到,前面128个较大的特征值可以表示整体的95%的信息,所以我们可以对其使用奇异值分解的方式降低维度从而达到降低复杂度的目的;

下图是不同层次的累积贡献度的谱分布,如下:

从上图中我们可以发现:高层的谱分布比下层更倾斜,这意味着在高层,更多的信息集中在最大奇异值,导致了P的秩相较于底层较低;

这里利用两个思想,一个是the distributional Johnson–Lindenstrauss lemma, the Eckart–Young–Mirsky Theorem;前者证明出现高维矩阵是低秩矩阵这种现象是正常的,后者表示奇异值分解在相同的维度下获得低秩矩阵的绝大部分信息;而奇异值分解是相当需要计算量的,高维矩阵分解操作起来很复杂,这里论文中使用投影的方式解决了这一问题;

2.3 模型架构

直接看下面这张图,就知道作者做了什么处理:

Linear层得到了 Q , K , V Q,K,V Q,K,V后,为了降低 K , V K,V K,V的维度,其使用了投影到低维的方式,具体公式如下:

之前 Q W , K W , V W QW,KW,VW QW,KW,VW都是一个n·d_model的矩阵,在这里有 E i , F i E_i,F_i Ei,Fi都是一个k·n的矩阵,有前面的softmax变成了一个 n·k的矩阵,后者是一个k·d的矩阵,这里的空间复杂度为 O ( k n + 2 k d ) O(kn + 2kd) O(kn+2kd),把平方项降低为一次项;如果我们可以选择一个非常小的投影维数k,即kn,那么我们就可以显著地减少内存和空间消耗;

从下图,我们可以发现设置的k越小,推理速度越快;

这和预期一致;

继续优化可以采用方法

Parameter sharing between projections:即共享投影层的参数,

  • 头之间共享:在每一层中的投影矩阵 E , F E,F E,F中,我们共享两个投影矩阵 E i E_i Ei F i F_i Fi,确保在每一个头 i i i中,有 E i = E , F i = F E_i=E,F_i=F Ei=E,Fi=F
  • K , V K,V K,V之间共享:在每一层中的投影矩阵 E , F E,F E,F中,我们共享两个投影矩阵 E i E_i Ei F i F_i Fi并化为一个矩阵,确保在每一个头 i i i中,有 E i = F i = E E_i=F_i=E Ei=Fi=E
  • 层与层之间共享:在所有的层中,对于所有的头部,对于所有的键和值,都使用一个投影矩阵 E E E

Nonuniform projected dimension:不均匀投影,意思是结合不同层的低秩矩阵的秩,如上文我们可以得到高层的秩要比底层的秩要小,所以我们可以在高层设置较小的k在低层设置较大的k

General projections: 我们可以采用其他的机制来缩小维度,而不是利用一个简单的投影的方式,例如均值池化,最大池化,卷积等等方式来缩小维度代替简单投影;

2.4 结果

论文中的结果可视化如下:

接下来对结果做一些解释:

a,b两图作者做了ppl曲线来判断模型的效果,在 n = 512 n=512 n=512时,随着k的增加,模型越来越贴近standard transformer曲线,有的模型甚至超过了;在 n = 1024 n=1024 n=1024时,表现了相同的趋势,但是同时可以发现,效果是非常贴近于标准模型的;

c图中,使用了三种参数共享策略来检验模型结果,可以发现参数共享并不会产生较大的影响,所以我们可以在模型中使用参数贡献,在保存相同的效果下,减少模型的参数;

d图中随着序列长度的增加,投影维数保持不变,收敛后的最终ppl仍然保持大致相同。而且不同曲线之间的间隔大小似乎相等,说明这是线性的;

下游任务模型效果,可以发现模型效果有些甚至超过了BERTDistillBERT

从模型 n = 1024 , k = 256 n = 1024,k = 256 n=1024k=256和模型 n = 512 , k = 256 n = 512,k = 256 n=512k=256效果一致可以看出来,模型的效果由预测维度k而不是比率n/k决定;

这是推理时间效果和空间复杂度效果的对比,可以看到Linformer可以在保持效果的情况下,大大优化时间和空间复杂度;

三、整体总结

这是一篇介绍transformer的优化模型的论文,其对普通的transformer模型进行了优化,把时间复杂度和空间复杂度都从 O ( n 2 ) O(n^2) O(n2)降低为了 O ( n ) O(n) O(n);论文推出的模型叫Linformer,其主要思想利用到了两个思想,一个是the distributional Johnson–Lindenstrauss lemma, the Eckart–Young–Mirsky Theorem;这两个思想一同证实了利用降维去构造一个低秩矩阵来降低复杂度的可行性;

相关文章:

[Linformer]论文实现:Linformer: Self-Attention with Linear Complexity

文章目录 一、完整代码二、论文解读2.1 介绍2.2 Self-Attention is Low Rank2.3 模型架构2.4 结果 三、整体总结 论文:Linformer: Self-Attention with Linear Complexity 作者:Sinong Wang, Belinda Z. Li, Madian Khabsa, Han Fang, Hao Ma 时间&#…...

【Jeecg Boot 3 - 第二天】1.1、后端 docker-compose 部署 JEECGBOOT3

一、场景 二、实战 ▶ 2.1 修改配置文件 > 目的一:将 dev 变更为生产环境 prod > 目的二:方便spring项目调用docker同个network下的redis和mysql ▶ 2.2 编写dockerfile ▶ 2.3 编写docker-compose.yaml ▶ 2.4 打…...

Centos单用户模式修改root密码

在CentOS 7的单用户模式下,你可以按照以下步骤修改root用户密码: 启动CentOS 7并进入GRUB菜单。在启动时按下任意键进入GRUB菜单。 在GRUB菜单中,选择要启动的CentOS 7内核版本,并按下e键进行编辑。 找到以 ro 开头的行&#xf…...

[Unity]关于Unity接入Appsflyer并且打点支付

首先需要去官方下载Appsflyer的UnityPackage 链接在这afPackage 然后导入 导入完成 引入此段代码 using AppsFlyerSDK; using System.Collections; using System.Collections.Generic; using UnityEngine;public class AppflysManager : MonoBehaviour {public static App…...

AICore 带来了 Android 专属的 AI 能力,它要解决什么?采用什么架构思路?

前言 Google 最近发布的 Gemini 模型在全球引起了巨大反响,其在多模态领域的 Video demo 无比震撼。对于 Android 开发者而言,其中最振奋人心的消息莫过于 Gemini Nano 模型将内置到 Android 系统当中,并开放给开发者使用。 事实上&#xf…...

python学习1

大家好,这里是七七,今天开始又新开一个专栏,Python学习。这次思考了些许,准备用例子来学习,而不是只通过一大堆道理和书本来学习了。啊对,这次是从0开始学习,因此大佬不用看本文了,小…...

【SpringBoot】Spring Boot 单体应用升级 Spring Cloud 微服务

Spring Cloud 是在 Spring Boot 之上构建的一套微服务生态体系,包括服务发现、配置中心、限流降级、分布式事务、异步消息等,因此通过增加依赖、注解等简单的四步即可完成 Spring Boot 应用到 Spring Cloud 升级。 Spring Boot 应用升级为 Spring Cloud…...

el-tree搜索的使用

2023.12.11今天我学习了如何对el-tree进行搜索的功能,效果如下: 代码如下: 重点部分:给el-tree设置ref,通过监听roleName的变化过滤数据。 default-expand-all可以设置默认展开全部子节点。 check可以拿到当前节点的…...

Java使用Microsoft Entra微软 SSO 认证接入

1. Microsoft Entra Microsoft Entra ID 是基于云的标识和访问管理服务,可帮助员工访问外部资源。 示例资源包括 Microsoft 365、Azure 门户以及成千上万的其他 SaaS 应用程序。 Microsoft Entra ID 还可帮助他们访问你的企业 Intranet 上的应用等内部资源&#x…...

“华为杯”研究生数学建模竞赛2016年-【华为杯】A题:无人机在抢险救灾中的优化运用(附获奖论文及MATLAB代码实现)

目录 摘 要: 1. 问题重述 1.1. 问题背景 1.2. 需要解决的问题 1.2.1....

17--异常处理

1、异常概述 1.1 什么是异常 异常:指的是程序在执行过程中,出现的非正常情况,如果不处理最终会导致JVM的非正常停止。 异常指的并不是语法错误和逻辑错误。语法错了,编译不通过,不会产生字节码文件,根本运…...

数据结构 | c++编程实现求二叉树的叶节点的个数。(递归非递归)

目录 非递归 递归 非递归 #include<iostream> #include<stack> using namespace std; struct BTNode {int data;BTNode* left, * right;BTNode(int val) :data(val), left(NULL), right(NULL) {}}; //递归的方式求二叉树的叶子结点数 int countnode(BTNode* t) …...

python读取csv文件

在Python中&#xff0c;你可以使用pandas库来读取CSV文件。以下是一个基本的例子&#xff1a; import pandas as pd# 读取CSV文件data pd.read_csv(filename.csv)# 显示前几行数据print(data.head()) 这里&#xff0c;filename.csv应该被替换为你的CSV文件的实际路径和名称。…...

租一台服务器多少钱决定服务器的价格因素有哪些

租一台服务器多少钱决定服务器的价格因素有哪些 大家好我是艾西&#xff0c;服务器这个名词对于不从业网络行业的人们看说肯定还是比较陌生的。在21世纪这个时代发展迅速的年代服务器在现实生活中是不可缺少的一环&#xff0c;平时大家上网浏览自己想要查询的信息等都是需要服…...

深度学习(生成式模型)——ADM:Diffusion Models Beat GANs on Image Synthesis

文章目录 前言基础模型结构UNet结构Timestep Embedding关于为什么需要timestep embedding global attention layer 如何提升diffusion model生成图像的质量Classifier guidance实验结果 前言 在前几篇博文中&#xff0c;我们已经介绍了DDPM、DDIM、Classifier guidance等相关的…...

Ubuntu无法解析域名DNS指向127.0.0.53问题处理

用nslookup 域名.com返回127.0.0.53无法解析错误 error"Could not lookup srv records on xxx.com: lookup xxx.com on 127.0.0.53:53: no such host" #首次尝试编辑/etc/resolved.conf文件DNS为8.8.8.8 或1.1.1.1 发现reboot重启后又恢复到127.0.0.53的内容#再次尝…...

Intewell-Hyper I_V2.0.0_release版本正式发布

新型工业操作系统_Intewell-Hyper I_V2.0.0_release版本正式发布 软件发布版本信息 版本号&#xff1a;V2.0.0 版本发布类型&#xff1a;release正式版本 版本特点 1.建立Intewell-Hyper I基线版本 版本或修改说明 基于Intewell-Lin V2.3.0_release版本&#xff1a; 1.Devel…...

Mysql mybatis 语法示例

service package com.ruoyi.goods.service;import java.util.List; import com.ruoyi.goods.domain.GoodsProducts;/*** 商品Service接口* * author ruoyi* date 2023-08-27*/ public interface IGoodsProductsService {/*** 查询商品* * param ProductID 商品主键* return 商…...

第77讲:二进制方式搭建MySQL数据库5.7版本以及错误日志管理

二进制方式搭建MySQL数据库5.7版本 前面是使用的yum的方式安装的MySQL数据库,在企业生产环境中大多数都用二进制方式安装。 本次使用二进制方式搭建MySQL 5.7.36版本。 1.二进制安装MySQL5.7版本 1.1.下载MySQL5.7版本的二进制文件 [root@mysql ~]# wget https://downloads.…...

R语言,table()函数实现统计每个元素出现的频数+并将最终统计频数结果转换成dataframe数据框形式

在 R中&#xff0c;要统计dataframe数据框中每个元素出现的频数&#xff0c;可以使用table()函数。以下是一个示例&#xff1a; 目录 一、创建数据 二、统计第一列每个元素出现的频数 三、统计第二列每个元素出现的频数 四、将频数结果转换为数据框&#xff0c;并改列名 一…...

《从零掌握MIPI CSI-2: 协议精解与FPGA摄像头开发实战》-- CSI-2 协议详细解析 (一)

CSI-2 协议详细解析 (一&#xff09; 1. CSI-2层定义&#xff08;CSI-2 Layer Definitions&#xff09; 分层结构 &#xff1a;CSI-2协议分为6层&#xff1a; 物理层&#xff08;PHY Layer&#xff09; &#xff1a; 定义电气特性、时钟机制和传输介质&#xff08;导线&#…...

家政维修平台实战20:权限设计

目录 1 获取工人信息2 搭建工人入口3 权限判断总结 目前我们已经搭建好了基础的用户体系&#xff0c;主要是分成几个表&#xff0c;用户表我们是记录用户的基础信息&#xff0c;包括手机、昵称、头像。而工人和员工各有各的表。那么就有一个问题&#xff0c;不同的角色&#xf…...

渲染学进阶内容——模型

最近在写模组的时候发现渲染器里面离不开模型的定义,在渲染的第二篇文章中简单的讲解了一下关于模型部分的内容,其实不管是方块还是方块实体,都离不开模型的内容 🧱 一、CubeListBuilder 功能解析 CubeListBuilder 是 Minecraft Java 版模型系统的核心构建器,用于动态创…...

Pinocchio 库详解及其在足式机器人上的应用

Pinocchio 库详解及其在足式机器人上的应用 Pinocchio (Pinocchio is not only a nose) 是一个开源的 C 库&#xff0c;专门用于快速计算机器人模型的正向运动学、逆向运动学、雅可比矩阵、动力学和动力学导数。它主要关注效率和准确性&#xff0c;并提供了一个通用的框架&…...

C#中的CLR属性、依赖属性与附加属性

CLR属性的主要特征 封装性&#xff1a; 隐藏字段的实现细节 提供对字段的受控访问 访问控制&#xff1a; 可单独设置get/set访问器的可见性 可创建只读或只写属性 计算属性&#xff1a; 可以在getter中执行计算逻辑 不需要直接对应一个字段 验证逻辑&#xff1a; 可以…...

android13 app的触摸问题定位分析流程

一、知识点 一般来说,触摸问题都是app层面出问题,我们可以在ViewRootImpl.java添加log的方式定位;如果是touchableRegion的计算问题,就会相对比较麻烦了,需要通过adb shell dumpsys input > input.log指令,且通过打印堆栈的方式,逐步定位问题,并找到修改方案。 问题…...

MyBatis中关于缓存的理解

MyBatis缓存 MyBatis系统当中默认定义两级缓存&#xff1a;一级缓存、二级缓存 默认情况下&#xff0c;只有一级缓存开启&#xff08;sqlSession级别的缓存&#xff09;二级缓存需要手动开启配置&#xff0c;需要局域namespace级别的缓存 一级缓存&#xff08;本地缓存&#…...

ubuntu22.04有线网络无法连接,图标也没了

今天突然无法有线网络无法连接任何设备&#xff0c;并且图标都没了 错误案例 往上一顿搜索&#xff0c;试了很多博客都不行&#xff0c;比如 Ubuntu22.04右上角网络图标消失 最后解决的办法 下载网卡驱动&#xff0c;重新安装 操作步骤 查看自己网卡的型号 lspci | gre…...

软件工程 期末复习

瀑布模型&#xff1a;计划 螺旋模型&#xff1a;风险低 原型模型: 用户反馈 喷泉模型:代码复用 高内聚 低耦合&#xff1a;模块内部功能紧密 模块之间依赖程度小 高内聚&#xff1a;指的是一个模块内部的功能应该紧密相关。换句话说&#xff0c;一个模块应当只实现单一的功能…...

Linux 下 DMA 内存映射浅析

序 系统 I/O 设备驱动程序通常调用其特定子系统的接口为 DMA 分配内存&#xff0c;但最终会调到 DMA 子系统的dma_alloc_coherent()/dma_alloc_attrs() 等接口。 关于 dma_alloc_coherent 接口详细的代码讲解、调用流程&#xff0c;可以参考这篇文章&#xff0c;我觉得写的非常…...