C++实现AVL树
目录
一、搜索二叉树
1.1 搜索二叉树概念
二、模拟实现二叉搜索树
2.1 框架
2.2 构造函数
2.2.1 构造函数
2.2.2 拷贝构造
2.2.3 赋值拷贝
2.3 插入函数
2.3.1 insert()
2.3.2 RcInsert() 递归实现
2.4 删除结点函数
2.4.1 Erase()
2.4.2 RcErase()
2.5 中序遍历
2.6 查找函数find()
2.7 析构函数
2.8 测试函数
三、AVL算法实现平衡二叉搜索树
3.1 普通搜索二叉树的性能分析
3.2 AVL树概念与性质
3.3 AVL树结点的定义
3.4 AVL树结点插入
3.5 AVL树旋转算法保持树平衡
3.5.1 新节点插入较高左子树的左侧---左左:右单旋
3.5.2 新节点插入较高右子树的右侧---右右:左单旋
3.5.3 新节点插入较高左子树的右侧---左右:先左单旋再右单旋
3.5.4 新节点插入较高右子树的左侧---右左:先右单旋再左单旋
3.6 判断一个搜索二叉树是否为平衡
3.7 测试AVL树
一、搜索二叉树
1.1 搜索二叉树概念

百度:
搜索二叉树或者是一棵空树,或者是具有下列性质的二叉树: 若它的左子树不空,则左子树上所有结点的值均小于它的根节点的值; 若它的右子树不空,则右子树上所有结点的值均大于它的根结点的值 。
二、模拟实现二叉搜索树
2.1 框架
namespace K
{//结点类template <class T>class BSNode{public:BSNode(const T& data = T()):_data(data),_left(nullptr),_right(nullptr){}public:T _data;BSNode<T>* _left;BSNode<T>* _right;};//搜索二叉树template<class T>class BSTree{public:typedef BSNode<T> Node;BSTree();BSTree(const BSTree<T>& t);BSTree<T>& operator=(BSTree<T> tmp);~BSTree();bool insert(const T& x = T());//中序遍历(从小到大)void InOrder();bool find(const T& x);bool Erase(const T& x);//recursive 递归实现bool RcFind(const T& x);bool RcInsert(const T& x);bool RcErase(const T& x);private:Node* root;};
}
2.2 构造函数
2.2.1 构造函数
BSTree():root(nullptr)
{}
2.2.2 拷贝构造
void copyTree(const Node* r)
{if (r == nullptr)return;insert(r->_data);copyTree(r->_left);copyTree(r->_right);
}BSTree(const BSTree<T>& t):root(nullptr)
{copyTree(t.root);
}
2.2.3 赋值拷贝
BSTree<T>& operator=(BSTree<T> tmp)
{swap(root, tmp.root);return *this;
}
2.3 插入函数
2.3.1 insert()
bool insert(const T& x = T())
{if (root == nullptr){root = new Node(x);return true;}//root!=nullprtNode* cur = root;Node* prev = nullptr;while (cur){prev = cur;//比根大,往右子树走if (x > cur->_data){cur = cur->_right;}//比根小,往左子树走else if (x < cur->_data){cur = cur->_left;}//相等不符合规则,返回falseelsereturn false;}//链接(比根小,链左边,比根大链右边)cur = new Node(x);if (x > prev->_data) prev->_right = cur;else prev->_left = cur;return true;
}
2.3.2 RcInsert() 递归实现

public:
bool RcInsert(const T& x)
{return _RcInsert(root, x);//因为根的私有性,我们用间接调用的方式实现函数功能
}private:
bool _RcInsert(Node*& root, const T& x)
{if (root == nullptr){root = new Node(x);return true;}if (x > root->_data) _RcInsert(root->_right, x);else if (x < root->_data) _RcInsert(root->_left, x);else return false;
}
2.4 删除结点函数


2.4.1 Erase()
bool Erase(const T& x)
{if (root == nullptr)return false;Node* cur = root;Node* prev = nullptr;// 找到要删除的结点while (cur){if (x > cur->_data){prev = cur;cur = cur->_right;}else if (x < cur->_data){prev = cur;cur = cur->_left;}else break;}//情况cif (cur->_left == nullptr){if (prev == nullptr){root = cur->_right;}else{if (cur->_data > prev->_data)prev->_right = cur->_right;else prev->_left = cur->_right;}delete cur;}//情况belse if (cur->_right == nullptr){if (prev == nullptr){root = cur->_left;}else{if (cur->_data > prev->_data)prev->_right = cur->_left;else prev->_left = cur->_left;}delete cur;}//情况delse{Node* minRight = cur->_right;prev = cur;while (minRight->_left){prev = minRight;minRight = minRight->_left;}cur->_data = minRight->_data;//千万要记得先将minRight的右结点和其父节点链接在一起if (minRight == prev->_left)prev->_left = minRight->_right;else prev->_right = minRight->_right;delete minRight;}return true;
}
2.4.2 RcErase()
public:
bool RcErase(const T& x)
{return _RcErase(root, x);
}
private:
bool _RcErase(Node*& root, const T& x)
{if (root == nullptr)return false;if (x > root->_data) _RcErase(root->_right, x);else if (x < root->_data) _RcErase(root->_left, x);else{Node* tmp = root;if (root->_left == nullptr){root = root->_right;delete tmp;}else if (root->_right == nullptr){Node* tmp = root;root = root->_left;delete tmp;}else{Node* minRight = root->_right;while (minRight->_left){minRight = minRight->_left;}root->_data = minRight->_data;//递归删除minright_RcErase(root->_right, root->_data);}}return true;
}
2.5 中序遍历
public:
void InOrder()
{_InOrder(root);cout << endl;
}
private:
void _InOrder(Node* root)
{if (root == nullptr)return;_InOrder(root->_left);cout << root->_data << ' ';_InOrder(root->_right);
}
2.6 查找函数find()
bool find(const T& x)
{if (root == nullptr)return false;Node* cur = root;while (cur){if (x > cur->_data)cur = cur->_right;else if (x < cur->_data)cur = cur->_left;else return true;}return false;
}
2.7 析构函数
public:
~BSTree()
{Destroy(root);
}
private:
void Destroy(Node* root)
{if (root == nullptr)return;Destroy(root->_left);Destroy(root->_right);delete root;
}
2.8 测试函数
void TestBSTree1()
{int arr[] = { 7,3,5,2,1,9,4,8,6 };K::BSTree<int> tree;for (auto e : arr){tree.insert(e);}tree.InOrder();for (int i = 1;i <= 9;i++){tree.Erase(i);tree.InOrder();}
}void TestBSTree2()
{int arr[] = { 7,3,5,2,1,9,4,8,6 };K::BSTree<int> tree1;for (auto e : arr){tree1.RcInsert(e);}tree1.InOrder();K::BSTree<int> tree2;tree2 = tree1;tree2.InOrder();
}
三、AVL算法实现平衡二叉搜索树
3.1 普通搜索二叉树的性能分析

最优情况下,二叉搜索树为完全二叉树(或者接近完全二叉树),其平均比较次数为:logN
最差情况下,二叉搜索树退化为单支树(或者类似单支),其平均比较次数为:O(N)
3.2 AVL树概念与性质

二叉搜索树虽可以缩短查找的效率,但如果数据有序或接近有序二叉搜索树将退化为单支树,查找元素相当于在顺序表中搜索元素,效率低下。
因此,两位俄罗斯的数学家G.M.Adelson-Velskii和E.M.Landis在1962年发明了一种解决上述问题的方法:当向二叉搜索树中插入新结点后,如果能保证每个结点的左右子树高度之差的绝对值不超过1(需要对树中的结点进行调整),即可降低树的高度,从而减少平均搜索长度。
性质:
1.它的左右子树都是AVL树
2.左右子树高度之差(简称平衡因子)的绝对值不超过1(-1/0/1) 高度差=右树高 - 左树高3.AVL树的查找效率为O(logN)
3.3 AVL树结点的定义
template <class T>
struct AVLTreeNode
{
public:AVLTreeNode(const T& data):_data(data),_left(nullptr),_right(nullptr),_parent(nullptr),_bf(0){}AVLTreeNode<T>* _left;AVLTreeNode<T>* _right;AVLTreeNode<T>* _parent;T _data;int _bf;//树的平衡因子
};
3.4 AVL树结点插入
bool insert(const T& data)
{if (_root == nullptr){_root = new Node(data);return true;}//找到插入位置Node* cur = _root;Node* parent = nullptr;while (cur){parent = cur;if (data > cur->_data)cur = cur->_right;else if (data < cur->_data)cur = cur->_left;elsereturn false;}//插入新节点并建立链接cur = new Node(data);cur->_parent = parent;if (cur->_data > parent->_data){parent->_right = cur;}else{parent->_left = cur;}//判断平衡因子while (parent){if (cur == parent->_left){parent->_bf--;}else{parent->_bf++;}if (parent->_bf == 0)break;else if (parent->_bf == -1 || parent->_bf == 1){cur = parent;parent = parent->_parent;}else if (parent->_bf == -2 || parent->_bf == 2){//右高 右右if (parent->_bf == 2 && cur->_bf == 1)RotateL(parent);//左高 左左else if (parent->_bf == -2 && cur->_bf == -1)RotateR(parent);//右高 右左else if (parent->_bf == 2 && cur->_bf == -1)RotateRL(cur);//左高 左右else if (parent->_bf == -2 && cur->_bf == 1)RotateLR(cur);//任何其他情况都直接报错else assert(false);break;}else{assert(false);}}return true;
}
3.5 AVL树旋转算法保持树平衡
3.5.1 新节点插入较高左子树的左侧---左左:右单旋
情况一:左边高且插入结点在父节点左边!
以30结点为轴,将30的右结点与父节点链接,然后将60做30的右结点,这样就可以使树保持为平衡搜索树!

void RotateR(Node* parent)
{Node* SubL = parent->_left;//父节点的左孩子Node* SubLR = SubL->_right;//左孩子的右孩子parent->_left = SubLR;//将左孩子的右孩子与父节点的左链接if (SubLR) SubLR->_parent = parent;//右孩子不为空,则找父亲//下面准备更新SubL为父节点,记录祖父节点Node* gparent = parent->_parent;//更新的节点是根节点,则直接改变rootif (parent == _root){_root = SubL;SubL->_parent = nullptr;}else {//判断父节点与祖父节点的关系if (parent == gparent->_left)gparent->_left = SubL;else gparent->_right = SubL;//与祖父节点链接SubL->_parent = parent->_parent;}//与原父节点链接,其链接在新父节点右SubL->_right = parent;parent->_parent = SubL;//更新平衡因子parent->_bf = SubL->_bf = 0;
}
3.5.2 新节点插入较高右子树的右侧---右右:左单旋

情况二:右边高且插入结点在父节点的右边
以60为轴,将60的左结点与父节点30的右链接,将父节点30与60的左链接!
void RotateL(Node* parent)
{Node* SubR = parent->_right;Node* SubRL = SubR->_left;parent->_right = SubRL;if (SubRL) SubRL->_parent = parent;Node* gparent = parent->_parent;if (parent == _root){_root = SubR;SubR->_parent = nullptr;}else {if (parent == gparent->_left)gparent->_left = SubR;else gparent->_right = SubR;SubR->_parent = gparent;}SubR->_left = parent;parent->_parent = SubR;parent->_bf = SubR->_bf = 0;
}
3.5.3 新节点插入较高左子树的右侧---左右:先左单旋再右单旋
先以60为轴进行左旋,然后以60为轴进行右旋

这里插入新节点后60节点的平衡因子对最后的的30,90平衡因子右影响!
如果60的平衡因子是-1,最后90的平衡因子就是1,30的平衡因子是0。
如果60的平衡因子是1,最后90的平衡因子就是0,30的平衡因子是-1。
如果60的平衡因子是0.最后30,90的平衡因子都是0。
void RotateLR(Node* parent) //parent --> 30节点
{Node* SubR = parent->_right;int bf = SubR->_bf; //记录插入新节点后的60的平衡因子Node* gparent = parent->_parent; //gparent --> 90节点RotateL(parent); //30以60为轴左旋RotateR(gparent); //90以60为轴右旋if (bf == 1){SubR->_bf = 0;parent->_bf = 0;gparent->_bf = -1;}else if (bf == -1){SubR->_bf = 0;parent->_bf = 0;gparent->_bf = 1;}else {SubR->_bf = parent->_bf = gparent->_bf = 0;}
}
3.5.4 新节点插入较高右子树的左侧---右左:先右单旋再左单旋
先以60为轴进行右旋,然后以60为轴进行左旋!
同样我们30,90最后平衡因子的更新需要判断60的平衡因子!

void RotateRL(Node* parent)
{Node* SubL = parent->_left;int bf = SubL->_bf;Node* gparent = parent->_parent;RotateR(parent);RotateL(gparent);if (bf == 1){SubL->_bf = 0;parent->_bf = -1;gparent->_bf = 0;}else if (bf == -1){SubL->_bf = 0;parent->_bf = 0;gparent->_bf = 1;}else {SubL->_bf = parent->_bf = gparent->_bf = 0;}
}
3.6 判断一个搜索二叉树是否为平衡
//深层遍历,计算每个节点的高度
int TreeHeight(Node* root)
{if (root == nullptr)return 0;int Left_height = TreeHeight(root->_left);int Right_height = TreeHeight(root->_right);//返回左右子树的最大高度+ 1(自己本身) ==此节点的高度return Left_height > Right_height ? Left_height + 1 : Right_height + 1;
}
bool IsBalanceTree(Node* root)
{if (root == nullptr)return true;int Left_height = TreeHeight(root->_left);int Right_height = TreeHeight(root->_right);//判断 1.此时高度下是否满足平衡 2.左子树是否满足 3.右子树是否满足return abs(Left_height - Right_height) <= 1 && IsBalanceTree(root->_left) && IsBalanceTree(root->_right);
}
3.7 测试AVL树

相关文章:
C++实现AVL树
目录 一、搜索二叉树 1.1 搜索二叉树概念 二、模拟实现二叉搜索树 2.1 框架 2.2 构造函数 2.2.1 构造函数 2.2.2 拷贝构造 2.2.3 赋值拷贝 2.3 插入函数 2.3.1 insert() 2.3.2 RcInsert() 递归实现 2.4 删除结点函数 2.4.1 Erase() 2.4.2 RcErase() 2.5 中序遍历…...
高并发语言erlang编程初步
初步 下载安装与初步使用 下载并安装,然后开始菜单中有对应的图标,打开就能进入erlang的命令行。当然也可以将其安装路径的bin文件夹加入环境变量,然后就可以在命令行中输入erl进入erlang了。 在erlang语言中,语句结束需要用.标…...
springboot 问题记录
部署到Tomcat中的时候,找不到需要部署的项目; project facets severt-name severt-class安装lombok.jar eclipse添加lombok插件后闪退打不开Clean 项目,project clean clean的作用检查插件部署项目Springboot修改端口号:applica…...
【PAT甲级题解记录】1034 Head of a Gang (30 分)
【PAT甲级题解记录】1034 Head of a Gang (30 分) 前言 Problem:1034 Head of a Gang (30 分) Tags:图的遍历 连通分量统计 DFS Difficulty:剧情模式 想流点汗 想流点血 死而无憾 Address:1034 Head of a Gang (30 分) 问题描述 …...
Python搭建一个steam钓鱼网站,只要免费领游戏,一钓一个准
前言 嗨喽~大家好呀,这里是魔王呐 ❤ ~! 我们日常上网的时候,总是会碰到一些盗号的网站,或者是别人发一些链接给你, 里面的内容是一些可以免费购物网站的优惠券、游戏官网上可以免费领取皮肤、打折的游戏。 这些盗号网站统一的目…...
maven 私服nexus安装与使用
一、下载nexus Sonatype公司的一款maven私服产品 1、官网下载地址:https://help.sonatype.com/repomanager3/product-information/download 2、csdn下载地址:https://download.csdn.net/download/u010197591/87522994 二、安装与配置 1、下载后解压如…...
详解数据结构中的顺序表的手动实现,顺序表功能接口【数据结构】
文章目录线性表顺序表接口实现尾插尾删头插头删指定位置插入指定位置删除练习线性表 线性表(linear list)是n个具有相同特性的数据元素的有限序列。 线性表是一种在实际中广泛使用的数据结构,常见的线性表:顺序表、链表、栈、队列…...
【二】kubernetes操作
k8s卸载重置 名词解释 1、Namespace:名称用来隔离资源,不隔离网络 创建名称空间 一、命名空间namesapce 方式一:命令行创建 kubectl create ns hello删除名称空间 kubectl delete ns hello查询指定的名称空间 kubectl get pod -n kube-s…...
如何在 C++ 中调用 python 解析器来执行 python 代码(五)?
本节研究如何对 import 做白名单 目录 如何在 C 中调用 python 解析器来执行 python 代码(一)?如何在 C 中调用 python 解析器来执行 python 代码(二)?如何在 C 中调用 python 解析器来执行 python 代码&…...
八 SpringMVC【拦截器】登录验证
目录🚩一 SpringMVC拦截器✅ 1.配置文件✅2.登录验证代码(HandlerInterceptor)✅3.继承HandlerInterceptorAdapter(不建议使用)✅4.登录页面jsp✅5.主页面(操作页面)✅6.crud用户在访问页面时 只…...
PhotoShop基础使用
49:图片分类 1:像素图 特点:放大后可见,右一个个色块(像素)组合而成。 优点:容量小,纯天然 JPG、JPEG、png、GIF 2:矢量图 面向对象图像 绘图图像 特点:不…...
借助阿里云 AHPA,苏打智能轻松实现降本增效
作者:元毅 “高猛科技已在几个主要服务 ACK 集群上启用了 AHPA。相比于 HPA 的方案,AHPA 的主动预测模式额外降低了 12% 的资源成本。同时 AHPA 能够提前资源预热、自动容量规划,能够很好的应对突发流量。” ——赵劲松 (高猛科技高级后台工…...
美团2面:如何保障 MySQL 和 Redis 数据一致性?这样答,让面试官爱到 死去活来
美团2面:如何保障 MySQL 和 Redis 的数据一致性? 说在前面 在尼恩的(50)读者社群中,经常遇到一个 非常、非常高频的一个面试题,但是很不好回答,类似如下: 如何保障 MySQL 和 Redis…...
react hooks学习记录
react hook学习记录1.什么是hooks2.State Hook3.Effect Hook4.Ref Hook1.什么是hooks (1). Hook是React 16.8.0版本增加的新特性/新语法 (2). 可以让你在函数组件中使用 state 以及其他的 React 特性 貌似现在更多的也是使用函数式组件的了,重要 2.State Hook imp…...
创新型中小企业认定评定标准
一、公告条件评价得分达到 60 分以上(其中创新能力指标得分不低于 20 分、成长性指标及专业化指标得分均不低于 15 分),或满足下列条件之一:(一)近三年内获得过国家级、省级科技奖励。(二&#…...
记录一次nginx转发代理skywalking白屏 以及nginx鉴权配置
上nginx代码 #user nobody; worker_processes 1; #error_log logs/error.log; #error_log logs/error.log notice; #error_log logs/error.log info; #pid logs/nginx.pid; events { worker_connections 1024; } http { include mime.types; …...
如何使用FarsightAD在活动目录域中检测攻击者部署的持久化机制
关于FarsightAD FarsightAD是一款功能强大的PowerShell脚本,该工具可以帮助广大研究人员在活动目录域遭受到渗透攻击之后,检测到由攻击者部署的持久化机制。 该脚本能够生成并导出各种对象及其属性的CSV/JSON文件,并附带从元数据副本中获取…...
Python - 操作txt文件
文章目录打开txt文件读取txt文件写入txt文件删除txt文件打开txt文件 open(file, moder, bufferingNone, encodingNone, errorsNone, newlineNone, closefdTrue)函数用来打开txt文件。 #方法1,这种方式使用后需要关闭文件 f open("data.txt","r&qu…...
老杜MySQL入门基础 1
1 数据库:DataBase(存储数据的仓库) 2 数据库管理系统:DataBaseManagementSystem(DBMS)(管理数据库中的数据的) DBMS可以对数据库中的数据进行增删改查常见的数据库管理系统:MySQL、Oracle、SQLserver 3 SQL:结构化查询语言 编…...
Vue中splice的使用
splice(index,len,[item])它也可以用来替换/删除/添加数组内某一个或者几个值(该方法会改变原始数组) index:数组开始下标 len: 替换/删除的长度 item:替换的值,删除操作的话 item为空 删除: //删除起始下标为1&…...
进程地址空间(比特课总结)
一、进程地址空间 1. 环境变量 1 )⽤户级环境变量与系统级环境变量 全局属性:环境变量具有全局属性,会被⼦进程继承。例如当bash启动⼦进程时,环 境变量会⾃动传递给⼦进程。 本地变量限制:本地变量只在当前进程(ba…...
【第二十一章 SDIO接口(SDIO)】
第二十一章 SDIO接口 目录 第二十一章 SDIO接口(SDIO) 1 SDIO 主要功能 2 SDIO 总线拓扑 3 SDIO 功能描述 3.1 SDIO 适配器 3.2 SDIOAHB 接口 4 卡功能描述 4.1 卡识别模式 4.2 卡复位 4.3 操作电压范围确认 4.4 卡识别过程 4.5 写数据块 4.6 读数据块 4.7 数据流…...
JVM垃圾回收机制全解析
Java虚拟机(JVM)中的垃圾收集器(Garbage Collector,简称GC)是用于自动管理内存的机制。它负责识别和清除不再被程序使用的对象,从而释放内存空间,避免内存泄漏和内存溢出等问题。垃圾收集器在Ja…...
听写流程自动化实践,轻量级教育辅助
随着智能教育工具的发展,越来越多的传统学习方式正在被数字化、自动化所优化。听写作为语文、英语等学科中重要的基础训练形式,也迎来了更高效的解决方案。 这是一款轻量但功能强大的听写辅助工具。它是基于本地词库与可选在线语音引擎构建,…...
在QWebEngineView上实现鼠标、触摸等事件捕获的解决方案
这个问题我看其他博主也写了,要么要会员、要么写的乱七八糟。这里我整理一下,把问题说清楚并且给出代码,拿去用就行,照着葫芦画瓢。 问题 在继承QWebEngineView后,重写mousePressEvent或event函数无法捕获鼠标按下事…...
Mysql8 忘记密码重置,以及问题解决
1.使用免密登录 找到配置MySQL文件,我的文件路径是/etc/mysql/my.cnf,有的人的是/etc/mysql/mysql.cnf 在里最后加入 skip-grant-tables重启MySQL服务 service mysql restartShutting down MySQL… SUCCESS! Starting MySQL… SUCCESS! 重启成功 2.登…...
Java数值运算常见陷阱与规避方法
整数除法中的舍入问题 问题现象 当开发者预期进行浮点除法却误用整数除法时,会出现小数部分被截断的情况。典型错误模式如下: void process(int value) {double half = value / 2; // 整数除法导致截断// 使用half变量 }此时...
CSS | transition 和 transform的用处和区别
省流总结: transform用于变换/变形,transition是动画控制器 transform 用来对元素进行变形,常见的操作如下,它是立即生效的样式变形属性。 旋转 rotate(角度deg)、平移 translateX(像素px)、缩放 scale(倍数)、倾斜 skewX(角度…...
day36-多路IO复用
一、基本概念 (服务器多客户端模型) 定义:单线程或单进程同时监测若干个文件描述符是否可以执行IO操作的能力 作用:应用程序通常需要处理来自多条事件流中的事件,比如我现在用的电脑,需要同时处理键盘鼠标…...
CppCon 2015 学习:Time Programming Fundamentals
Civil Time 公历时间 特点: 共 6 个字段: Year(年)Month(月)Day(日)Hour(小时)Minute(分钟)Second(秒) 表示…...
