当前位置: 首页 > news >正文

TCP/UDP 协议

目录

一.TCP协议

1.介绍

2.报文格式

​编辑

确认号

控制位

窗口大小

3.TCP特性

二.TCP协议的三次握手

1.tcp 三次握手的过程

三.四次挥手

2.有限状态机

四.tcp协议和udp协议的区别

五.udp协议

UDP特性

六.telnet协议


一.TCP协议

1.介绍

TCP(Transmission Control Protocol)传输控制协议是一种面向连接的、可靠的、基于字节流的传输层通信协议,由IETF的RFC 793定义。TCP是互联网中使用最广泛的协议之一,与IP协议一起构成TCP/IP协议族的基础。

2.报文格式

源端口(Source Port)16发送方使用的端口号,标识发送数据的应用程序。
目的端口(Destination Port)16接收方使用的端口号,标识接收数据的应用程序。
序号(Sequence Number)32数据流中的第一个字节的编号,用于确保数据按序到达。
确认号(Acknowledgment Number)32对方需要确认的最后一个已接收字节的编号+1。
首部长度(Heade Length)4表示TCP头部长度,以32位字(4字节)为单位。
保留(Reserved)6必须为0,通常用于将来扩展。
控制位(Control Bit)8包含多个控制位,如URG(紧急)、ACK(确认)、PSH(急切)、RST(重置)、SYN(同步)、FIN(断开)。
窗口大小(Window Size)16接收方期望的下一报文段的最大长度。
校验和(Checksum)16用于检测数据错误的校验和,覆盖头部和数据部分。
紧急指针(Urgent Pointer)16如果设置了URG标志,则指出紧急数据的末尾。

确认号

seq(确认号)=x

A--------------》》B

《《----------------- 确认号x+1 希望A 下次发的数据包序号为x+1

seq=x+1

------------------》》

确认号的作用:告诉对方我收到了你的消息 确认机制

控制位

控制位:描述了AB两台电脑目前处于什么状态

tcp 先要建立连接

A B

1没有建立连接

2已建立连接

3断开连接

URG(紧急位):当该位被置为1时,表示紧急指针有效。紧急指针字段指出紧急数据的末尾。

紧急数据通常用于通知接收方有需要立即处理的信息。

表示本报文段中发送的数据是否包含紧急数据。后面的紧急指针字段(urgent pointer)只有当URG=1时才有效

ACK(确认位):当该位被置为1时,确认号字段有效。这意味着发送方已经收到了之前的数据,并且正在期待接收方的下一个序列号的数据。所有的连接建立、数据传输和连接终止都必须使用ACK标志

表示是否前面确认号字段是否有效。只有当ACK=1时,前面的确认号字段才有效。TCP规定,连接建立后,ACK必须为1,带ACK标志的TCP报文段称为确认报文段

PSH(急切位):当该位被置为1时,要求接收方立即将数据提交给上层应用程序,而不是等待缓冲区填满后再进行

提示接收端应用程序应该立即从TCP接收缓冲区中读走数据,为接收后续数据腾出空间。如果为1,则表示对方应当立即把数据提交给上层应用,而不是缓存起来,如果应用程序不将接收到的数据读走,就会一直停留在TCP接收缓冲区中

RST(重置位):当该位被置为1时,表示连接出现严重错误或者异常,需要重新初始化连接状态。

RST标志通常在网络故障、非法数据包或连接超时等情况下使用

如果收到一个RST=1的报文,说明与主机的连接出现了严重错误(如主机崩溃),必须释放连接,然后再重新建立连接。或者说明上次发送给主机的数据有问题,主机拒绝响应,带RST标志的TCP报文段称为复位报文段

SYN(同步位):当该位被置为1时,表示这是一个连接请求或连接接受报文。在三次握手过程中,SYN标志用于同步序列号

在建立连接时使用,用来同步序号。当SYN=1,ACK=0时,表示这是一个请求建立连接的报文段;当SYN=1,ACK=1时,表示对方同意建立连接。SYN=1,说明这是一个请求建立连接或同意建立连接的报文。只有在前两次握手中SYN才置为1,带SYN标志的TCP报文段称为同步报文段

FIN(断开位):当该位被置为1时,表示发送方已经没有更多的数据要发送,希望关闭连接。

在四次挥手过程中,FIN标志用于结束数据传输

表示通知对方本端要关闭连接了,标记数据是否发送完毕。如果FIN=1,即告诉对方:“我的数据已经发送完毕,你可以释放连接了”,带FIN标志的TCP报文段称为结束报文段

  • syn=1 请求建立连接
  • syn=1 ack=1 同一和你连接
  • fin=1 请求断开
  • fin=1 ack 同一和你断开

窗口大小

窗口大小: 调节每次发送的数据包量

服务端和客户端之间会根据实际情况 自动调节数据包的个数

3.TCP特性

  • 工作在传输层

  • 面向连接协议

  • 全双工协议

  • 半关闭

  • 错误检查(校验)

  • 将数据打包成段,排序 (给数据排序,确定数据来源于哪一台主机)

  • 确认机制,对面每发一个包,我会告诉对面我收到了

  • 数据恢复,重传

  • 流量控制,滑动窗口

二.TCP协议的三次握手

TCP建立连接的过程称为三次握手

为什么要是三次?

确保数据能够到达,2次不够,4次多余,三次正好

1.tcp 三次握手的过程

客户端主动发起请求报文,其中报文序号是随机产生的x,并且报文中的控制位SYN=1,代表请求建立连接

当服务端收到请求建立连接的报文会回复一个报文会产生是随机序号y,生成一个确认号值为客户端请求报文的序号+1(x+1),然后控制位SYN=1,ACK=1代表同意建立连接

当客户端收同一建立连接的报文时,会回复一个确认报文,会按照对方要求 产生序号为x+1,再生成一个确认号值为对方报文的序号+1(y+1),最后控制位的ACK=1,代表收到对方同意连接的请求

pc1 pc2

1发送SYN报文(seq=x,SYN=1)

2发送SYN+ACK报文(seq=y,ack=x+1,SYN=1,ACK=1)

3发送ACK报文(seq=x+1,ack=y+1,ACK=1)

当pc1想和pc2建立起连接 将 连接信息写入报文

第一步 :pc1会发送一个 建立连接的请求报文 : 这个报文中 有

  1. 报文的序号(seq=x)

  2. 同步位(请求建立连接关系: SYN=1 ACK=0 控制位:当前两台机器处于什么状态? 建立连接 处于连接 断开连接 )

第二步: 当pc2 收到消息以后 是不是要回复一个报文

  1. 报文的序号 (seq=y)

  2. ack确认号( 我希望你下一次发送 x+1 序号的报文给你 )

  3. 控制位 SYN=1 ACK=1 请求建立连接 pc2 同意建立连接

第三步:收到 pc2 同意建立连接的报文后

1.会发送一个x+1报文

2.会告诉对方 我希望你下次 发送y+1的序号报文给我

3.最后 将ACK=1 封装进去 告诉我收到你的同意请求

三.四次挥手

四次挥手(Four-way Handshake)是TCP(Transmission Control Protocol)协议用于终止连接的过程。这个过程确保了双方都知道对方已经准备好关闭连接,防止数据丢失和资源浪费。

挥手为什么需要四次?
因为当服务端收到客户端的SYN连接请求报文后,可以直接发送SYN+ACK报文。其中ACK报文是用来应答的,SYN报文是用来同步的。但是关闭连接时,当服务端收到FIN报文时,很可能并不会立即关闭SOCKET,所以只能先回复一个ACK报文,告诉客户端,“你发的FIN报文我收到了”。只有等到我服务端所有的报文都发送完了,我才能发送FIN报文,因此不能一起发送。故需要四次挥手。

(一)主动关闭方发送FIN:

主动关闭方(通常是客户端或发起断开请求的一方)向被动关闭方(通常是服务器端或接收到断开请求的一方)发送一个FIN=1的报文段。这个报文段表明主动关闭方没有更多的数据要发送,并进入FIN-WAIT-1状态。

(二)被动关闭方回复ACK:被动关闭方接收到FIN报文段后,返回一个带有ACK=1的报文段,确认收到了主动关闭方的断开请求。此时,被动关闭方会将未完成的数据发送给主动关闭方,然后进入CLOSE-WAIT状态。

(三)被动关闭方发送FIN:当被动关闭方完成了所有数据的发送后,它也会向主动关闭方发送一个FIN=1的报文段,表示自己也准备好关闭连接。这时,被动关闭方进入LAST-ACK状态。

(四)主动关闭方回复ACK:主动关闭方接收到被动关闭方的FIN报文段后,返回一个带有ACK=1的报文段,确认收到了被动关闭方的断开请求。这时,主动关闭方进入TIME-WAIT状态,等待一段时间以确保最后一个ACK能够到达被动关闭方。

(五)被动关闭方关闭连接:被动关闭方接收到主动关闭方的ACK报文段后,可以安全地关闭连接。

(六)主动关闭方关闭连接:在TIME-WAIT状态等待一段时间后,如果主动关闭方没有收到任何数据包,则认为最后一个ACK已经成功送达,可以安全地关闭连接。

通过这个四次挥手的过程,TCP能够确保双方都已准备好关闭连接,避免了因一方错误关闭连接而引发的问题

2.有限状态机

  • CLOSED 没有任何连接状态
  • LISTEN 监听状态,等待来自远方TCP端口的连接请求 
  • SYN-SENT 在发送连接请求后,等待对方确认
  • SYN-RECEIVED 在收到和发送一个连接请求后,等待对方确认
  • ESTABLISHED 代表传输连接建立,双方进入数据传送状态
  • FIN-WAIT-1 主动关闭,主机已发送关闭连接请求,等待对方确认
  • FIN-WAIT-2 主动关闭,主机已收到对方关闭传输连接确认,等待对方发送关闭传输连接请求
  • TIME-WAIT 完成双向传输连接关闭,等待所有分组消失
  • CLOSE-WAIT 被动关闭,收到对方发来的关闭连接请求,并已确认
  • LAST-ACK 被动关闭,等待最后一个关闭传输连接确认,并等待所有分组消失
  • CLOSING 双方同时尝试关闭传输连接,等待对方确认

四.tcp协议和udp协议的区别

tcpudp
是否连接面向连接不连接
是否可靠可靠,传输使用流量控制和拥塞控制不可靠,不使用流量控制和拥塞控制
传输方式面向字节流面向报文
传输效率
使用场景适用于要求可靠传输的应用,例女文件传输适用于实时应用 (IP电话、视频会议、直播等)

五.udp协议

UDP(User Datagram Protocol)用户数据报协议是一种无连接的传输层通信协议,它不保证数据包的顺序、可靠性和完整性。

  • 简单快速:UDP没有复杂的握手和确认机制,数据包可以直接发送到目标主机。
  • 无连接:在使用UDP之前,不需要建立连接。只需知道接收方的IP地址和端口号,就可以直接发送数据包。这也意味着当网络条件变化时,UDP无法自动调整发送速率或重新发送丢失的数据包。
  • 不可靠:UDP不提供任何保证数据包到达目的地的机制。如果数据包在网络中丢失、损坏或延迟,UDP不会进行重传或修复。
     

UDP特性

  • 工作在传输层
  • 提供不可靠的网络访问
  • 非面向连接协议
  • 有限的错误检查
  • 传输性能高
  • 无数据恢复特性

udp 69 tftp 简易文件传输协议

111 rpc 远程过程调用

123 ntp 网络时间协议

六.telnet协议

远程连接协议(远程管理协议)

作用:探测远端服务器端口是否打开

相关文章:

TCP/UDP 协议

目录 一.TCP协议 1.介绍 2.报文格式 ​编辑 确认号 控制位 窗口大小 3.TCP特性 二.TCP协议的三次握手 1.tcp 三次握手的过程 三.四次挥手 2.有限状态机 四.tcp协议和udp协议的区别 五.udp协议 UDP特性 六.telnet协议 一.TCP协议 1.介绍 TCP(Transm…...

如何正确理解和使用 Golang 中 nil ?

目录 指针中的 nil 切片中的 nil map 中的 nil 通道中的 nil 函数中的 nil 接口中的 nil 避免 nil 相关问题的最佳实践 小结 在 Golang 中,nil 是一个预定义的标识符,在不同的上下文环境中有不同的含义,但通常表示“无”、“空”或“…...

IDEA新建jdk8 spring boot项目

今天新建spring boot项目发现JDK版本最低可选17。 但是目前用的最多的还是JDK8啊。 解决办法 Server URL中设置: https://start.aliyun.com/设置完成后,又可以愉快的用jdk8创建项目了。 参考 https://blog.csdn.net/imbzz/article/details/13469117…...

Qt/C++音视频开发59-使用mdk-sdk组件/原qtav作者力作/性能凶残/超级跨平台

一、前言 最近一个月一直在研究mdk-sdk音视频组件,这个组件是原qtav作者的最新力作,提供了各种各样的示例demo,不仅限于支持C,其他各种比如java/flutter/web/android等全部支持,性能上也是杠杠的,目前大概…...

智安网络|企业网络安全工具对比:云桌面与堡垒机,哪个更适合您的需求

随着云计算技术的快速发展,越来越多的企业开始采用云计算解决方案来提高效率和灵活性。在云计算环境下,云桌面和堡垒机被广泛应用于企业网络安全和办公环境中。尽管它们都有助于提升企业的安全和效率,但云桌面和堡垒机在功能和应用方面存在着…...

Git忽略已经提交的文件

原理类似于 Android修改submodule的lib包名...

MVVM和MVC以及MVP的原理以及它们的区别

MVVM、MVC 和 MVP 都是前端架构模式,它们各自有不同的原理和特点。 MVC(Model-View-Controller) 原理:MVC 将应用程序分为三个部分:模型(Model)、视图(View)和控制器&a…...

WeChatMsg: 导出微信聊天记录 | 开源日报 No.108

Mozilla-Ocho/llamafile Stars: 3.5k License: NOASSERTION llamafile 是一个开源项目,旨在通过将 lama.cpp 与 Cosmopolitan Libc 结合成一个框架,将 LLM (Large Language Models) 的复杂性折叠到单个文件可执行程序中,并使其能够在大多数…...

Python学习之复习MySQL-Day3(DQL)

目录 文章声明⭐⭐⭐让我们开始今天的学习吧!DQL简介基本查询查询多个/全部字段设置别名去除重复记录 条件查询条件查询介绍实例演示 聚合函数什么是聚合函数?常见的聚合函数实例演示 分组查询分组查询语法where 和 having 的区别实例演示 排序查询语法实…...

AI超级个体:ChatGPT与AIGC实战指南

目录 前言 一、ChatGPT在日常工作中的应用场景 1. 客户服务与支持 2. 内部沟通与协作 3. 创新与问题解决 二、巧用ChatGPT提升工作效率 1. 自动化工作流程 2. 信息整合与共享 3. 提高决策效率 三、巧用ChatGPT创造价值 1. 优化产品和服务 2. 提高员工满意度和留任率…...

SpringBoot集成websocket(5)|(使用OkHttpClient实现websocket以及详细介绍)

SpringBoot集成websocket(5)|(使用OkHttpClient实现websocket以及详细介绍) 文章目录 SpringBoot集成websocket(5)|(使用OkHttpClient实现websocket以及详细介绍)[TOC] 前言一、初始…...

Kafka-Kafka基本原理与集群快速搭建(实践)

Kafka单机搭建 下载Kafka Apache Download Mirrors 解压 tar -zxvf kafka_2.12-3.4.0.tgz -C /usr/local/src/software/kafkakafka内部bin目录下有个内置的zookeeper(用于单机) 启动zookeeper(在后台启动) nohup bin/zookeeper-server-start.sh conf…...

Elasticsearch 进阶(索引、类型、字段、分片、副本、集群等详细说明)-06

笔记来源:Elasticsearch Elasticsearch进阶 进阶-核心概念 索引Index 一个索引就是一个拥有几分相似特征的文档的集合。比如说,你可以有一个客户数据的索引,另一个产品目录的索引,还有一个订单数据的索引。一个索引由一个名字…...

hive的分区表和分桶表详解

分区表 Hive中的分区就是把一张大表的数据按照业务需要分散的存储到多个目录,每个目录就称为该表的一个分区。在查询时通过where子句中的表达式选择查询所需要的分区,这样的查询效率会提高很多。 静态分区表基本语法 创建分区表 create table dept_p…...

verilog语法进阶-分布式ram

概述: FPGA的LUT查找表是用RAM设计的,所以LUT可以当成ram来使用,也并不是所有的LUT都可以当成ram来使用,sliceM的ram可以当成分布式ram来使用,而sliceL的ram只能当成rom来使用,也就是只能读,不能写&#x…...

HarmonyOS使用HTTP访问网络

HTTP数据请求 1 概述 日常生活中我们使用应用程序看新闻、发送消息等,都需要连接到互联网,从服务端获取数据。例如,新闻应用可以从新闻服务器中获取最新的热点新闻,从而给用户打造更加丰富、更加实用的体验。 那么要实现这样一种…...

GZ015 机器人系统集成应用技术样题1-学生赛

2023年全国职业院校技能大赛 高职组“机器人系统集成应用技术”赛项 竞赛任务书(学生赛) 样题1 选手须知: 本任务书共 25页,如出现任务书缺页、字迹不清等问题,请及时向裁判示意,并进行任务书的更换。参赛队…...

计算机毕业设计 基于SpringBoot的日常办公用品直售推荐系统的设计与实现 Java实战项目 附源码+文档+视频讲解

博主介绍:✌从事软件开发10年之余,专注于Java技术领域、Python人工智能及数据挖掘、小程序项目开发和Android项目开发等。CSDN、掘金、华为云、InfoQ、阿里云等平台优质作者✌ 🍅文末获取源码联系🍅 👇🏻 精…...

uniapp:使用fixed定位,iOS平台的安全区域问题解决

manifest.json > 添加节点 "safearea": { //iOS平台的安全区域"background": "#1C1E22","backgroundDark": "#1C1E22", // HX 3.1.19支持"bottom": {"offset": "auto"} },已解决&#xff…...

三层交换机原理与配置

文章目录 三层交换机原理与配置一、三层交换技术概述二、传统的 MLS三、基于CEF 的MLS1、转发信息库(FIB)2、邻接关系表3、工作原理: 四、三层交换机的配置1、三层交换机配置命令2、三层交换机配置步骤 三层交换机原理与配置 一、三层交换技…...

装饰模式(Decorator Pattern)重构java邮件发奖系统实战

前言 现在我们有个如下的需求,设计一个邮件发奖的小系统, 需求 1.数据验证 → 2. 敏感信息加密 → 3. 日志记录 → 4. 实际发送邮件 装饰器模式(Decorator Pattern)允许向一个现有的对象添加新的功能,同时又不改变其…...

安宝特方案丨XRSOP人员作业标准化管理平台:AR智慧点检验收套件

在选煤厂、化工厂、钢铁厂等过程生产型企业,其生产设备的运行效率和非计划停机对工业制造效益有较大影响。 随着企业自动化和智能化建设的推进,需提前预防假检、错检、漏检,推动智慧生产运维系统数据的流动和现场赋能应用。同时,…...

Nginx server_name 配置说明

Nginx 是一个高性能的反向代理和负载均衡服务器,其核心配置之一是 server 块中的 server_name 指令。server_name 决定了 Nginx 如何根据客户端请求的 Host 头匹配对应的虚拟主机(Virtual Host)。 1. 简介 Nginx 使用 server_name 指令来确定…...

用docker来安装部署freeswitch记录

今天刚才测试一个callcenter的项目,所以尝试安装freeswitch 1、使用轩辕镜像 - 中国开发者首选的专业 Docker 镜像加速服务平台 编辑下面/etc/docker/daemon.json文件为 {"registry-mirrors": ["https://docker.xuanyuan.me"] }同时可以进入轩…...

精益数据分析(97/126):邮件营销与用户参与度的关键指标优化指南

精益数据分析(97/126):邮件营销与用户参与度的关键指标优化指南 在数字化营销时代,邮件列表效度、用户参与度和网站性能等指标往往决定着创业公司的增长成败。今天,我们将深入解析邮件打开率、网站可用性、页面参与时…...

OPenCV CUDA模块图像处理-----对图像执行 均值漂移滤波(Mean Shift Filtering)函数meanShiftFiltering()

操作系统:ubuntu22.04 OpenCV版本:OpenCV4.9 IDE:Visual Studio Code 编程语言:C11 算法描述 在 GPU 上对图像执行 均值漂移滤波(Mean Shift Filtering),用于图像分割或平滑处理。 该函数将输入图像中的…...

七、数据库的完整性

七、数据库的完整性 主要内容 7.1 数据库的完整性概述 7.2 实体完整性 7.3 参照完整性 7.4 用户定义的完整性 7.5 触发器 7.6 SQL Server中数据库完整性的实现 7.7 小结 7.1 数据库的完整性概述 数据库完整性的含义 正确性 指数据的合法性 有效性 指数据是否属于所定…...

Caliper 配置文件解析:fisco-bcos.json

config.yaml 文件 config.yaml 是 Caliper 的主配置文件,通常包含以下内容: test:name: fisco-bcos-test # 测试名称description: Performance test of FISCO-BCOS # 测试描述workers:type: local # 工作进程类型number: 5 # 工作进程数量monitor:type: - docker- pro…...

深度学习之模型压缩三驾马车:模型剪枝、模型量化、知识蒸馏

一、引言 在深度学习中,我们训练出的神经网络往往非常庞大(比如像 ResNet、YOLOv8、Vision Transformer),虽然精度很高,但“太重”了,运行起来很慢,占用内存大,不适合部署到手机、摄…...

十九、【用户管理与权限 - 篇一】后端基础:用户列表与角色模型的初步构建

【用户管理与权限 - 篇一】后端基础:用户列表与角色模型的初步构建 前言准备工作第一部分:回顾 Django 内置的 `User` 模型第二部分:设计并创建 `Role` 和 `UserProfile` 模型第三部分:创建 Serializers第四部分:创建 ViewSets第五部分:注册 API 路由第六部分:后端初步测…...