Attention机制 学习笔记
学习自https://easyai.tech/ai-definition/attention/
Attention本质
Attention(注意力)机制如果浅层的理解,跟他的名字非常匹配。他的核心逻辑就是“从关注全部到关注重点”。
比如我们人在看图片时,对图片的不同地方的注意力是不同的。

即,我们的视觉系统就是一种 Attention机制,将有限的注意力集中在重点信息上,从而节省资源,快速获得最有效的信息。
Attention与NLP的联系

Attention的优点
-
参数少,与CNN,RNN相比,参数少,复杂度更低
-
速度快,Attention机制每一步计算不依赖于上一步的计算结果,因此可以和CNN一样并行处理。
-
在 Attention 机制引入之前,有一个问题大家一直很苦恼:长距离的信息会被弱化,就好像记忆能力弱的人,记不住过去的事情是一样的。
Attention 是挑重点,就算文本比较长,也能从中间抓住重点,不丢失重要的信息。下图红色的预期就是被挑出来的重点。

Attention原理
一个小小的例子,比如我想要更多的了解漫威,那么我就应该多读一读相关的书籍,与之关系不大的书就不用大量地看。
![[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-46K93WJa-1676108183205)(./marvel.png)]](https://img-blog.csdnimg.cn/dfaefcd1a98641c5ab13a791e5f5f082.png)
稍微具体化一点就是:图书管(source)里有很多书(value),为了方便查找,我们给书做了编号(key)。当我们想要了解漫威(query)的时候,我们就可以看看那些动漫、电影、甚至二战(美国队长)相关的书籍。不过为了提升效率,动漫、电影的书籍需要多看一下,而二战类的书籍就不需要看那么多了。
Attention具体流程
- query 和 key 进行相似度计算,得到权值
- 将权值进行归一化,得到直接可用的权重
- 将权重和 value 进行加权求和
![[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-WeNYtAUN-1676108183205)(./attention.png)]](https://img-blog.csdnimg.cn/41713a67c1f44e0e87cb474a6666fb30.png)
相关文章:
Attention机制 学习笔记
学习自https://easyai.tech/ai-definition/attention/ Attention本质 Attention(注意力)机制如果浅层的理解,跟他的名字非常匹配。他的核心逻辑就是“从关注全部到关注重点”。 比如我们人在看图片时,对图片的不同地方的注意力…...
数据类型与运算符
1.字符型作用: 字符型变量用于显示单个字符语法: char cc a ;注意1: 在显示字符型变量时,用单引号将字符括起来,不要用双引号注意2: 单引号内只能有一个字符,不可以是字符串C和C中字符型变量只占用1个字节。字符型变是并不是把字符本身放到内存中存储&am…...
算法刷题-二叉树的锯齿形层序遍历、用栈实现队列 栈设计、买卖股票的最佳时机 IV
文章目录二叉树的锯齿形层序遍历(树、广度优先搜索)用栈实现队列(栈、设计)买卖股票的最佳时机 IV(数组、动态规划)二叉树的锯齿形层序遍历(树、广度优先搜索) 给定一个二叉树&…...
华为OD机试 - 最小传递延迟(Python)| 代码编写思路+核心知识点
最小传递延迟 题目 通讯网络中有 N 个网络节点 用 1 ~ N 进行标识 网络通过一个有向无环图进行表示 其中图的边的值,表示节点之间的消息传递延迟 现给定相连节点之间的延时列表 times[i]={u,v,w} 其中 u 表示源节点,v 表示目的节点,w 表示 u 和 v 之间的消息传递延时 请计…...
集中供热调度系统天然气仪表内网仪表图像识别案例
一、项目需求 出于能耗采集与冬季集中供暖工作的节能和能耗分析需要,要采集现场的6块天然气表计,并存储进入客户的mySQL数据库中,现场采集的表计不允许接线,且网络环境为内网环境,需要采集表计数据并存入数据库&#…...
笔试题-2023-复旦微-数字IC设计【纯净题目版】
回到首页:2023 数字IC设计秋招复盘——数十家公司笔试题、面试实录 推荐内容:数字IC设计学习比较实用的资料推荐 题目背景 笔试时间:2022.07.26应聘岗位:数字前端工程师笔试时长:120min笔试平台:赛码题目类型:基础题(10道)、选做题(10道)、验证题(5道)主观评价 难…...
【Linux】冯诺依曼体系结构和操作系统概念
文章目录🎪 冯诺依曼体系结构🚀1.体系概述🚀2.CPU和内存的数据交换🚀3.体系结构中数据的流动🎪 操作系统概念理解🚀1.简述🚀2.设计目的🚀3.定位🚀4.理解🚀5.管…...
HTML5之HTML基础学习笔记
列表标签 列表的应用场景 场景:在网页中按照行展示关联性的内容,如:新闻列表、排行榜、账单等特点:按照行的方式,整齐显示内容种类:无序列表、有序列表、自定义列表 这是老师PPT上的内容, 列表…...
FreeRTOS信号量 | FreeRTOS十
目录 说明: 一、信号量 1.1、信号量简介 1.2、信号量特点 二、二值信号量 2.1、二值信号量简介 2.2、获取与释放二值信号量函数 2.3、二值信号量使用过程与相关API函数 2.4、创建二值信号量函数了解 2.5、释放二值信号量了解 2.6、获取二值信号量了解 三…...
【SpringBoot】SpringBoot常用注解
一、前言首先这里说的SpringBoot常用注解是指在我们开发项目过程中,我们经常使用的注解,包含Spring、SpringBoot、SpringCloud、SpringMVC等这些框架中的注解,而不仅仅是SpringBoot中的注解。这里只是作一个注解列举,每个注解具体…...
数据一致性
目录一、AOP 动态代理切入方法(1) Aspect Oriented Programming(2) 切入点表达式二、SpringBoot 项目扫描类(1) ResourceLoader 扫描类(2) Map 的 computeIfAbsent 方法(3) 反射几个常用 api① 创建一个测试注解② 创建测试 PO 类③ 反射 api 获取指定类的指定注解信息(4) 返回…...
Docker不做虚拟化内核,对.NET有什么影响?
引子前两天刷抖音,看见了这样一个问题。问题:容器化不做虚拟内核,会有什么弊端?Java很多方法会跟CPU的核数有关,这个时候调用系统函数,读到的是宿主机信息,而不是我们限制资源的大小。思考&…...
HTML总结
CSS代码风格 空格规范: 1. 属性值前面,冒号后面,保留一个空格; 2. 选择器(标签)和大括号中间保留空格。 基本语法概述: 1.HTML标签是由尖括号包围的关键词,如<html> 2.HTM…...
ByteHouse:基于ClickHouse的实时数仓能力升级解读
更多技术交流、求职机会,欢迎关注字节跳动数据平台微信公众号,回复【1】进入官方交流群 ByteHouse是火山引擎上的一款云原生数据仓库,为用户带来极速分析体验,能够支撑实时数据分析和海量数据离线分析。便捷的弹性扩缩容能力&…...
[SSD固态硬盘技术 15] FTL映射表的神秘面纱
为什么需要映射表?固态硬盘的存储器件采用的是闪存[5],具有以下几个特点: (1)读写基本单位是以页(Page)为单位,擦除是以块(Block)为单位。...
浅析依赖注入框架的生命周期(以 InversifyJS 为例)
在上一篇介绍了 VSCode 的依赖注入设计,并且实现了一个简单的 IOC 框架。但是距离成为一个生产环境可用的框架还差的很远。 行业内已经有许多非常优秀的开源 IOC 框架,它们划分了更为清晰地模块来应对复杂情况下依赖注入运行的正确性。 这里我将以 Inv…...
HER2靶向药物研发进展-销售数据-上市药品前景分析
HER2长期作为肿瘤领域的热门靶点之一,其原因是它在多部位、多种形式的癌症中均有异常的表达,据研究表明HER2除了在胃癌、胆道癌、胆管癌、乳腺癌、卵巢癌、结肠癌、膀胱癌、肺癌、子宫颈癌、子宫浆液性子宫内膜癌、头颈癌、食道癌中的异常表达还存在于多…...
【第38天】不同路径数问题 | 网格 dp 入门
本文已收录于专栏🌸《Java入门一百例》🌸学习指引序、专栏前言一、网格模型二、【例题1】1、题目描述2、解题思路3、模板代码4、代码解析5.原题链接三、【例题2】1、题目描述2、解题思路3、模板代码4、代码解析5.原题链接三、推荐专栏四、课后习题序、专…...
LINUX之链接命令
链接命令学习目标能够说出软链接的创建方式能够说出硬链接的创建方式1. 链接命令的介绍链接命令是创建链接文件,链接文件分为:软链接硬链接命令说明ln -s创建软链接ln创建硬链接2. 软链接类似于Windows下的快捷方式,当一个源文件的目录层级比较深&#x…...
1628_MIT 6.828 xv6_chapter0操作系统接口
全部学习汇总: GreyZhang/g_unix: some basic learning about unix operating system. (github.com) 这本书最初看名字以为是对早期unix的一个解读,但是看了开篇发现 不完全是,只是针对JOS教学OS系统来做的一些讲解。 Xv6是对UNIX v6的重新实…...
深度学习在微纳光子学中的应用
深度学习在微纳光子学中的主要应用方向 深度学习与微纳光子学的结合主要集中在以下几个方向: 逆向设计 通过神经网络快速预测微纳结构的光学响应,替代传统耗时的数值模拟方法。例如设计超表面、光子晶体等结构。 特征提取与优化 从复杂的光学数据中自…...
云计算——弹性云计算器(ECS)
弹性云服务器:ECS 概述 云计算重构了ICT系统,云计算平台厂商推出使得厂家能够主要关注应用管理而非平台管理的云平台,包含如下主要概念。 ECS(Elastic Cloud Server):即弹性云服务器,是云计算…...
(十)学生端搭建
本次旨在将之前的已完成的部分功能进行拼装到学生端,同时完善学生端的构建。本次工作主要包括: 1.学生端整体界面布局 2.模拟考场与部分个人画像流程的串联 3.整体学生端逻辑 一、学生端 在主界面可以选择自己的用户角色 选择学生则进入学生登录界面…...
从WWDC看苹果产品发展的规律
WWDC 是苹果公司一年一度面向全球开发者的盛会,其主题演讲展现了苹果在产品设计、技术路线、用户体验和生态系统构建上的核心理念与演进脉络。我们借助 ChatGPT Deep Research 工具,对过去十年 WWDC 主题演讲内容进行了系统化分析,形成了这份…...
centos 7 部署awstats 网站访问检测
一、基础环境准备(两种安装方式都要做) bash # 安装必要依赖 yum install -y httpd perl mod_perl perl-Time-HiRes perl-DateTime systemctl enable httpd # 设置 Apache 开机自启 systemctl start httpd # 启动 Apache二、安装 AWStats࿰…...
Auto-Coder使用GPT-4o完成:在用TabPFN这个模型构建一个预测未来3天涨跌的分类任务
通过akshare库,获取股票数据,并生成TabPFN这个模型 可以识别、处理的格式,写一个完整的预处理示例,并构建一个预测未来 3 天股价涨跌的分类任务 用TabPFN这个模型构建一个预测未来 3 天股价涨跌的分类任务,进行预测并输…...
【Web 进阶篇】优雅的接口设计:统一响应、全局异常处理与参数校验
系列回顾: 在上一篇中,我们成功地为应用集成了数据库,并使用 Spring Data JPA 实现了基本的 CRUD API。我们的应用现在能“记忆”数据了!但是,如果你仔细审视那些 API,会发现它们还很“粗糙”:有…...
【Java_EE】Spring MVC
目录 Spring Web MVC 编辑注解 RestController RequestMapping RequestParam RequestParam RequestBody PathVariable RequestPart 参数传递 注意事项 编辑参数重命名 RequestParam 编辑编辑传递集合 RequestParam 传递JSON数据 编辑RequestBody …...
AI病理诊断七剑下天山,医疗未来触手可及
一、病理诊断困局:刀尖上的医学艺术 1.1 金标准背后的隐痛 病理诊断被誉为"诊断的诊断",医生需通过显微镜观察组织切片,在细胞迷宫中捕捉癌变信号。某省病理质控报告显示,基层医院误诊率达12%-15%,专家会诊…...
uniapp 字符包含的相关方法
在uniapp中,如果你想检查一个字符串是否包含另一个子字符串,你可以使用JavaScript中的includes()方法或者indexOf()方法。这两种方法都可以达到目的,但它们在处理方式和返回值上有所不同。 使用includes()方法 includes()方法用于判断一个字…...
