PyTorch官网demo解读——第一个神经网络(1)
神经网络如此神奇,feel the magic
今天分享一下学习PyTorch官网demo的心得,原来实现一个神经网络可以如此简单/简洁/高效,同时也感慨PyTorch如此强大。
这个demo的目的是训练一个识别手写数字的模型!
先上源码:
from pathlib import Path
import requests # http请求库
import pickle
import gzipfrom matplotlib import pyplot # 显示图像库import math
import numpy as np
import torch###########下载训练/验证数据######################################################
# 这里加载的是mnist数据集
DATA_PATH = Path("data")
PATH = DATA_PATH / "mnist"
PATH.mkdir(parents=True, exist_ok=True)URL = "https://github.com/pytorch/tutorials/raw/main/_static/"
FILENAME = "mnist.pkl.gz"if not (PATH / FILENAME).exists():content = requests.get(URL + FILENAME).content(PATH / FILENAME).open("wb").write(content)###########解压并加载训练数据######################################################
with gzip.open((PATH / FILENAME).as_posix(), "rb") as f:((x_train, y_train), (x_valid, y_valid), _) = pickle.load(f, encoding="latin-1")# 通过pyplot显示数据集中的第一张图片
# 显示过程会中断运行,看到效果之后可以屏蔽掉,让调试更顺畅
#print("x_train[0]: ", x_train[0])
#pyplot.imshow(x_train[0].reshape((28, 28)), cmap="gray")
#pyplot.show()# 将加载的数据转成tensor
x_train, y_train, x_valid, y_valid = map(torch.tensor, (x_train, y_train, x_valid, y_valid)
)
n, c = x_train.shape # n是函数,c是列数
print("x_train.shape: ", x_train.shape)
print("y_train.min: {0}, y_train.max: {1}".format(y_train.min(), y_train.max()))# 初始化权重和偏差值,权重是随机出来的784*10的矩阵,偏差初始化为0
weights = torch.randn(784, 10) / math.sqrt(784)
weights.requires_grad_()
bias = torch.zeros(10, requires_grad=True)# 激活函数
def log_softmax(x):return x - x.exp().sum(-1).log().unsqueeze(-1)# 定义模型:y = wx + b
# 实际上就是单层的Linear模型
def model(xb):return log_softmax(xb @ weights + bias)# 丢失函数 loss function
def nll(input, target):return -input[range(target.shape[0]), target].mean()
loss_func = nll# 计算精度函数
def accuracy(out, yb):preds = torch.argmax(out, dim=1)return (preds == yb).float().mean()###########开始训练##################################################################
bs = 64 # 每一批数据的大小
lr = 0.5 # 学习率
epochs = 2 # how many epochs to train forfor epoch in range(epochs):for i in range((n - 1) // bs + 1):start_i = i * bsend_i = start_i + bsxb = x_train[start_i:end_i]yb = y_train[start_i:end_i]pred = model(xb) # 通过模型预测loss = loss_func(pred, yb) # 通过与实际结果比对,计算丢失值loss.backward() # 反向传播with torch.no_grad():weights -= weights.grad * lr # 调整权重值bias -= bias.grad * lr # 调整偏差值weights.grad.zero_()bias.grad.zero_()##########对比一下预测结果############################################################
xb = x_train[0:bs] # 加载一批数据,这里用的是训练的数据,在实际应用中最好使用没训练过的数据来验证
yb = y_train[0:bs] # 训练数据对应的正确结果
preds = model(xb) # 使用训练之后的模型进行预测
print("################## after training ###################")
print("accuracy: ", accuracy(preds, yb)) # 打印出训练之后的精度
# print(preds[0])
print("pred value: ", torch.argmax(preds, dim=1)) # 打印预测的数字
print("real value: ", yb) # 实际正确的数据,可以直观地和上一行打印地数据进行对比
运行结果:

可以看到训练后模型地预测精度达到了0.9531,已经不错了,毕竟只使用了一个单层地Linear模型;从输出地对比数据中可以看出有三个地方预测错了(红框标记地数字)
ok,今天先到这里,下一篇再来解读代码中地细节
附:
PyTorch官方源码:https://github.com/pytorch/tutorials/blob/main/beginner_source/nn_tutorial.py
天地一逆旅,同悲万古愁!
相关文章:
PyTorch官网demo解读——第一个神经网络(1)
神经网络如此神奇,feel the magic 今天分享一下学习PyTorch官网demo的心得,原来实现一个神经网络可以如此简单/简洁/高效,同时也感慨PyTorch如此强大。 这个demo的目的是训练一个识别手写数字的模型! 先上源码: fr…...
升华 RabbitMQ:解锁一致性哈希交换机的奥秘【RabbitMQ 十】
欢迎来到我的博客,代码的世界里,每一行都是一个故事 升华 RabbitMQ:解锁一致性哈希交换机的奥秘【RabbitMQ 十】 前言第一:该插件需求为什么需要一种更智能的消息路由方式?一致性哈希的基本概念: 第二&…...
vue3 element-plus 日期选择器 el-date-picker 汉化
vue3 项目中,element-plus 的日期选择器 el-date-picker 默认是英文版的,如下: 页面引入: //引入汉化语言包 import locale from "element-plus/lib/locale/lang/zh-cn" import { ElDatePicker, ElButton, ElConfigP…...
剑指 Offer(第2版)面试题 35:复杂链表的复制
剑指 Offer(第2版)面试题 35:复杂链表的复制 剑指 Offer(第2版)面试题 35:复杂链表的复制解法1:模拟 剑指 Offer(第2版)面试题 35:复杂链表的复制 题目来源&…...
自定义指令Custom Directives
<script setup langts> import { ref } from "vue"const state ref(false)/*** Implement the custom directive* Make sure the input element focuses/blurs when the state is toggled* */ // 以v开头的驼峰式命名的变量都可以作为一个自定义指令 const VF…...
预测性维护对制造企业设备管理的作用
制造企业设备管理和维护对于生产效率和成本控制至关重要。然而,传统的维护方法往往无法准确预测设备故障,导致生产中断和高额维修费用。为了应对这一挑战,越来越多的制造企业开始采用预测性维护技术。 预测性维护是通过传感器数据、机器学习和…...
华为、新华三、锐捷常用命令总结
华为、新华三、锐捷常用命令总结 一、华为交换机基础配置命令二、H3C交换机的基本配置三、锐捷交换机基础命令配置 一、华为交换机基础配置命令 1、创建vlan: <Quidway> //用户视图,也就是在Quidway模式下运行命令。 <Quidway>system-view…...
链路追踪详解(四):分布式链路追踪的事实标准 OpenTelemetry 概述
目录 OpenTelemetry 是什么? OpenTelemetry 的起源和目标 OpenTelemetry 主要特点和功能 OpenTelemetry 的核心组件 OpenTelemetry 的工作原理 OpenTelemetry 的特点 OpenTelemetry 的应用场景 小结 OpenTelemetry 是什么? OpenTelemetry 是一个…...
Node.js 工作线程与子进程:应该使用哪一个
Node.js 工作线程与子进程:应该使用哪一个 并行处理在计算密集型应用程序中起着至关重要的作用。例如,考虑一个确定给定数字是否为素数的应用程序。如果我们熟悉素数,我们就会知道必须从 1 遍历到该数的平方根才能确定它是否是素数ÿ…...
python matplotlib 三维图形添加文字且不随图形变动而变动
要在三维图形中添加文字并使其不随图形变动而变动,可以使用 annotate() 方法。这个方法可以在三维图形中添加文字,并且可以指定文字的位置、对齐方式和字体大小等属性。 下面是一个示例代码,演示如何在三维图形中添加文字: impo…...
Ubuntu设置kubelet启动脚本关闭swap分区
查看swap分区 swapon -s打开swap分区 swapon -a查看/etc/fstab下所有固化的swap分区,注释 vi /etc/fstab修改kubelet.conf文件 vi /etc/systemd/system/kubelet.service.d/10-kubeadm.conf添加 ExecStartPre/sbin/swapoff -a生效 systemctl daemon-reload sys…...
MySQL数据库存储
MySQL数据库存储 MySQL数据库简介MySQL开发环境MySQL安装图形化界面工具Navicat使用 表的操作表的概念3.2 创建表3.3 修改表 数据的操作-增删改查4.1 增加数据4.2 删除数据4.3 修改数据4.4 查询数据4.4.1 基础查询4.4.2 分组查询和聚合函数4.4.4 having语句4.4.5 排序4.5 多表联…...
verilog语法进阶,时钟原语
概述: 内容 1. 时钟缓冲 2. 输入时钟缓冲 3. ODDR2作为输出时钟缓冲 1. 输入时钟缓冲 BUFGP verilog c代码,clk作为触发器的边沿触发,会自动将clk综合成时钟信号。 module primitive1(input clk,input a,output reg y); always (posed…...
案例069:基于微信小程序的计算机实验室排课与查询系统
文末获取源码 开发语言:Java 框架:SSM JDK版本:JDK1.8 数据库:mysql 5.7 开发软件:eclipse/myeclipse/idea Maven包:Maven3.5.4 小程序框架:uniapp 小程序开发软件:HBuilder X 小程序…...
C语言:将三个数从大到小输出
#include<stdio.h> int main() {int a 0;int b 0;int c 0;printf("请输入abc的值:");scanf_s("%d%d%d", &a, &b, &c);if (b > a){int tmp a;a b;b tmp;}if (c > a){int tmp a;a c;c tmp;}if (b < c){int t…...
基于Hadoop的铁路货运大数据平台设计与应用
完整下载:基于Hadoop的铁路货运大数据平台设计与应用 基于Hadoop的铁路货运大数据平台设计与应用 Design and Application of Railway Freight Big Data Platform based on Hadoop 目录 目录 2 摘要 3 关键词 4 第一章 绪论 4 1.1 研究背景 4 1.2 研究目的与意义 5 …...
Java基础题2:类和对象
1.下面代码的运行结果是() public static void main(String[] args){String s;System.out.println("s"s);}A.代码编程成功,并输出”s” B.代码编译成功,并输出”snull” C.由于String s没有初始化,代码不能…...
冒泡排序学习
冒泡排序(Bubble Sort)是一种简单的排序算法,它通过重复地交换相邻的元素来排序。具体实现如下: 1. 从待排序的数组中的第一个元素开始,依次比较相邻的两个元素。 2. 如果前一个元素大于后一个元素,则交换…...
LeetCode(65)LRU 缓存【链表】【中等】
目录 1.题目2.答案3.提交结果截图 链接: LRU 缓存 1.题目 请你设计并实现一个满足 LRU (最近最少使用) 缓存 约束的数据结构。 实现 LRUCache 类: LRUCache(int capacity) 以 正整数 作为容量 capacity 初始化 LRU 缓存int get(int key) 如果关键字 k…...
网站提示“不安全”
当你在浏览网站时,有时可能会遇到浏览器提示网站不安全的情况。这通常是由于网站缺乏SSL证书所致。那么,从SSL证书的角度出发,我们应该如何解决这个问题呢? 首先,让我们简单了解一下SSL证书。SSL证书是一种用于保护网站…...
MPNet:旋转机械轻量化故障诊断模型详解python代码复现
目录 一、问题背景与挑战 二、MPNet核心架构 2.1 多分支特征融合模块(MBFM) 2.2 残差注意力金字塔模块(RAPM) 2.2.1 空间金字塔注意力(SPA) 2.2.2 金字塔残差块(PRBlock) 2.3 分类器设计 三、关键技术突破 3.1 多尺度特征融合 3.2 轻量化设计策略 3.3 抗噪声…...
iOS 26 携众系统重磅更新,但“苹果智能”仍与国行无缘
美国西海岸的夏天,再次被苹果点燃。一年一度的全球开发者大会 WWDC25 如期而至,这不仅是开发者的盛宴,更是全球数亿苹果用户翘首以盼的科技春晚。今年,苹果依旧为我们带来了全家桶式的系统更新,包括 iOS 26、iPadOS 26…...
PPT|230页| 制造集团企业供应链端到端的数字化解决方案:从需求到结算的全链路业务闭环构建
制造业采购供应链管理是企业运营的核心环节,供应链协同管理在供应链上下游企业之间建立紧密的合作关系,通过信息共享、资源整合、业务协同等方式,实现供应链的全面管理和优化,提高供应链的效率和透明度,降低供应链的成…...
Python实现prophet 理论及参数优化
文章目录 Prophet理论及模型参数介绍Python代码完整实现prophet 添加外部数据进行模型优化 之前初步学习prophet的时候,写过一篇简单实现,后期随着对该模型的深入研究,本次记录涉及到prophet 的公式以及参数调优,从公式可以更直观…...
今日科技热点速览
🔥 今日科技热点速览 🎮 任天堂Switch 2 正式发售 任天堂新一代游戏主机 Switch 2 今日正式上线发售,主打更强图形性能与沉浸式体验,支持多模态交互,受到全球玩家热捧 。 🤖 人工智能持续突破 DeepSeek-R1&…...
Spring数据访问模块设计
前面我们已经完成了IoC和web模块的设计,聪明的码友立马就知道了,该到数据访问模块了,要不就这俩玩个6啊,查库势在必行,至此,它来了。 一、核心设计理念 1、痛点在哪 应用离不开数据(数据库、No…...
【Oracle】分区表
个人主页:Guiat 归属专栏:Oracle 文章目录 1. 分区表基础概述1.1 分区表的概念与优势1.2 分区类型概览1.3 分区表的工作原理 2. 范围分区 (RANGE Partitioning)2.1 基础范围分区2.1.1 按日期范围分区2.1.2 按数值范围分区 2.2 间隔分区 (INTERVAL Partit…...
.Net Framework 4/C# 关键字(非常用,持续更新...)
一、is 关键字 is 关键字用于检查对象是否于给定类型兼容,如果兼容将返回 true,如果不兼容则返回 false,在进行类型转换前,可以先使用 is 关键字判断对象是否与指定类型兼容,如果兼容才进行转换,这样的转换是安全的。 例如有:首先创建一个字符串对象,然后将字符串对象隐…...
python执行测试用例,allure报乱码且未成功生成报告
allure执行测试用例时显示乱码:‘allure’ �����ڲ����ⲿ���Ҳ���ǿ�&am…...
九天毕昇深度学习平台 | 如何安装库?
pip install 库名 -i https://pypi.tuna.tsinghua.edu.cn/simple --user 举个例子: 报错 ModuleNotFoundError: No module named torch 那么我需要安装 torch pip install torch -i https://pypi.tuna.tsinghua.edu.cn/simple --user pip install 库名&#x…...
