当前位置: 首页 > news >正文

二叉搜索树的简单C++类实现

二叉搜索树(BST)是一种重要的数据结构,它对于理解树的操作和算法至关重要,其中序输出是有序的。本文通过C++实现一个BST的类,并在插入和删除节点时提供清晰的输出,可视化这些操作的过程。

二叉搜索树的节点结构

首先定义一个TreeNode结构来表示树中的每个节点。每个节点包含一个整数值、一个指向左子节点的指针和一个指向右子节点的指针。

struct TreeNode {int value;TreeNode *left;TreeNode *right;TreeNode(int x) : value(x), left(nullptr), right(nullptr) {}
};

二叉搜索树类的实现

创建了一个BinarySearchTree类,它包含一个指向树根的指针和几个私有的递归辅助函数。这些函数用于实现插入、中序遍历和删除整棵树的操作。

class BinarySearchTree {
private:TreeNode *root;// 递归帮助函数,用于插入值TreeNode* insert(TreeNode *node, int value) {if (node == nullptr) {std::cout << "Inserted " << value << " into the BST.\n";return new TreeNode(value);}if (value < node->value) {std::cout << "Inserting " << value << " to the left of " << node->value << ".\n";node->left = insert(node->left, value);} else if (value > node->value) {std::cout << "Inserting " << value << " to the right of " << node->value << ".\n";node->right = insert(node->right, value);}return node;}// 递归帮助函数,用于中序遍历void inorderTraversal(TreeNode *node) const {if (node != nullptr) {inorderTraversal(node->left);std::cout << node->value << " ";inorderTraversal(node->right);}}// 递归帮助函数,用于删除树void deleteTree(TreeNode *node) {if (node != nullptr) {deleteTree(node->left);deleteTree(node->right);std::cout << "Deleting node with value: " << node->value << "\n";delete node;}}public:BinarySearchTree() : root(nullptr) {}~BinarySearchTree() {deleteTree(root);}void insert(int value) {root = insert(root, value);}void inorderTraversal() const {std::cout << "Inorder Traversal: ";inorderTraversal(root);std::cout << std::endl;}
};

插入操作

insert函数中添加打印语句来显示插入过程。这些打印语句帮助我们可视化了插入的每一步。

中序遍历

中序遍历是一种遍历树的方法,它首先访问左子树,然后访问根节点,最后访问右子树。对于BST来说,中序遍历的结果是按排序顺序显示树中的所有值。

删除操作

BinarySearchTree的析构函数中,我们实现了deleteTree函数来删除整棵树。在删除每个节点之前,我们打印出该节点的值。

主函数

在主函数中,我们创建了一个二叉搜索树实例,并插入了一些值。然后,我们执行了中序遍历来查看树的内容。

int main() {BinarySearchTree bst;// 插入元素bst.insert(5);bst.insert(3);bst.insert(7);bst.insert(2);bst.insert(4);bst.insert(6);bst.insert(8);// 中序遍历二叉搜索树bst.inorderTraversal();return 0;
}

结果分析

当我们运行上述程序时,控制台输出显示了插入节点的过程,并在程序结束时显示了删除节点的过程。

Inserted 5 into the BST.
Inserting 3 to the left of 5.
Inserted 3 into the BST.
Inserting 7 to the right of 5.
Inserted 7 into the BST.
Inserting 2 to the left of 5.
Inserting 2 to the left of 3.
Inserted 2 into the BST.
Inserting 4 to the left of 5.
Inserting 4 to the right of 3.
Inserted 4 into the BST.
Inserting 6 to the right of 5.
Inserting 6 to the left of 7.
Inserted 6 into the BST.
Inserting 8 to the right of 5.
Inserting 8 to the right of 7.
Inserted 8 into the BST.
Inorder Traversal: 2 3 4 5 6 7 8
Deleting node with value: 2
Deleting node with value: 4
Deleting node with value: 3
Deleting node with value: 6
Deleting node with value: 8
Deleting node with value: 7
Deleting node with value: 5

通过这些输出可以清楚地看到二叉搜索树在插入和删除节点时的行为。

不过要注意,这个示例没有实现删除单个节点的功能。在实际应用中,删除操作通常需要考虑多种不同的情况,并且可能需要重新平衡树以保持其性能。

相关文章:

二叉搜索树的简单C++类实现

二叉搜索树&#xff08;BST&#xff09;是一种重要的数据结构&#xff0c;它对于理解树的操作和算法至关重要&#xff0c;其中序输出是有序的。本文通过C实现一个BST的类&#xff0c;并在插入和删除节点时提供清晰的输出&#xff0c;可视化这些操作的过程。 二叉搜索树的节点结…...

禁毒知识竞赛流程和规则

禁毒知识竞赛是一项全国性竞赛活动。有着深化全国青少年毒品预防教育&#xff0c;巩固学校毒品预防教育成果的重要作用。本文介绍一场禁毒知识竞赛的完整流程和规则&#xff0c;供单位组织此类活动时参考。 1、赛制 第一轮10进6&#xff0c;第二轮6进4&#xff0c;4支队伍决出…...

CSS 基础

文章目录 CSS 常见的属性CSS 常见样式行内样式内嵌样式导入样式 CSS 选择器标签选择器id选择器类选择器全局选择器属性选择器组合选择器 CSS 常见应用表格列表导航栏下拉菜单提示工具图片廊 CSS (Cascading Style Sheets&#xff0c;层叠样式表&#xff09;&#xff0c;是一种用…...

黑色翻页时钟HTML源码-倒计时单页翻页时钟

黑色翻页时钟HTML源码-倒计时单页翻页时钟这是一个类似fliqlo的黑色翻页时钟HTML源码&#xff0c;它仅包含一个HTML文件&#xff0c;上传到网站后即可使用。该时钟具有查看当前时间、秒表和倒计时功能&#xff0c;并且可以在页面的右下角进行设置。 红色动态炫酷数字时钟html网…...

2043杨辉三角(C语言)

目录 一&#xff1a;题目 二&#xff1a;思路分析 三&#xff1a;代码 一&#xff1a;题目 二&#xff1a;思路分析 1.通过杨辉三角&#xff0c;不难发现中间的数等于肩头两个数之和 2.但是当我们的输出结果&#xff0c;与杨辉三角的形式有所不同&#xff0c;但是我们可以找…...

【机器学习】从底层手写实现线性回归

【机器学习】Building-Linear-Regression-from-Scratch 线性回归 Linear Regression0. 数据的导入与相关预处理0.工具函数1. 批量梯度下降法 Batch Gradient Descent2. 小批量梯度下降法 Mini Batch Gradient Descent&#xff08;在批量方面进行了改进&#xff09;3. 自适应梯度…...

判断数组中对象的某个值是否有相同的并去重

如果你想判断数组中对象的某个值是否有相同的&#xff0c;并进行去重&#xff0c;你可以使用 JavaScript 中的一些数组方法和 Set 对象。以下是一个示例&#xff1a; // 原始数组包含对象 const array [{ id: 1, name: John },{ id: 2, name: Jane },{ id: 3, name: Doe },{ …...

Shell脚本 变量 语句 表达式

常见的解释器 #!/bin/sh #不推荐(了解) #!/bin/bash #!/usr/bin/python #!/bin/awk#!后跟的字符表示要启动的程序&#xff0c;该程序读取该文件执行。 #! 是一个约定的标记&#xff0c;它告诉系统这个脚本需要什么解释器来执行shell 函数 myShellName () {command1 }函数调用…...

MIT6.S081-实验准备

实验全程在Vmware虚拟机 (镜像&#xff1a;Ubuntu-20.04-beta-desktop-amd64) 中进行 一、版本控制 1.1 将mit的实验代码克隆到本地 git clone git://g.csail.mit.edu/xv6-labs-2020 1.2 修改本地git配置文件 创建github仓库&#xff0c;记录仓库地址 我的仓库地址就是htt…...

工具在手,创作无忧:一键下载安装Auto CAD工具,让艺术创作更加轻松愉悦!

不要再浪费时间在网上寻找Auto CAD的安装包了&#xff01;因为你所需的一切都可以在这里找到&#xff01;作为全球领先的设计和绘图软件&#xff0c;Auto CAD为艺术家、设计师和工程师们提供了无限的创作潜力。不论是建筑设计、工业设计还是室内装饰&#xff0c;Auto CAD都能助…...

第25节: Vue3 带组件

在UniApp中使用Vue3框架时&#xff0c;你可以使用组件来封装可复用的代码块&#xff0c;并在需要的地方进行渲染。下面是一个示例&#xff0c;演示了如何在UniApp中使用Vue3框架使用带组件&#xff1a; <template> <view> <button click"toggleActive&q…...

ubuntu apache2配置反向代理

1.Ubuntu安装apache sudo apt-get update sudo apt-get install apache2 2.apache2反向代理配置 sudo vim /etc/apache2/sites-available/000-default.conf 添加内容如下&#xff1a; <VirtualHost *:80># The ServerName directive sets the request scheme, host…...

【数据挖掘 | 关联规则】FP-grow算法详解(附详细代码、案例实战、学习资源)

! &#x1f935;‍♂️ 个人主页: AI_magician &#x1f4e1;主页地址&#xff1a; 作者简介&#xff1a;CSDN内容合伙人&#xff0c;全栈领域优质创作者。 &#x1f468;‍&#x1f4bb;景愿&#xff1a;旨在于能和更多的热爱计算机的伙伴一起成长&#xff01;&#xff01;&a…...

力扣题目学习笔记(OC + Swift) 11

11.盛最多水的容器 给定一个长度为 n 的整数数组 height 。有 n 条垂线&#xff0c;第 i 条线的两个端点是 (i, 0) 和 (i, height[i]) 。 找出其中的两条线&#xff0c;使得它们与 x 轴共同构成的容器可以容纳最多的水。 返回容器可以储存的最大水量。 说明&#xff1a;你不能倾…...

JVM基础入门

JVM 基础入门 JVM 基础 聊一聊 Java 从编码到执行到底是一个怎么样的过程&#xff1f; 假设我们有一个文件 x.Java&#xff0c;你执行 javac&#xff0c;它就会变成 x.class。 这个 class 怎么执行的&#xff1f; 当我们调用 Java 命令的时候&#xff0c;class 会被 load 到…...

前端真的死了吗

随着人工智能和低代码的崛起&#xff0c;“前端已死”的声音逐渐兴起。前端已死&#xff1f;尊嘟假嘟&#xff1f;快来发表你的看法吧&#xff01; 以下方向仅供参考。 一、为什么会出现“前端已死”的言论 前端已死这个言论 是出自于2022年开始 &#xff0c;2022年下半年疫情…...

前后端分离开发

前期 前后端混合开发 后期 前后端分离开发...

向量数据库——AI时代的基座

向量数据库——AI时代的基座 1.前言 向量数据库在构建基于大语言模型的行业智能应用中扮演着重要角色。大模型虽然能回答一般性问题&#xff0c;但在垂直领域服务中&#xff0c;其知识深度、准确度和时效性有限。为了解决这一问题&#xff0c;企业可以利用向量数据库结合大模…...

【️什么是分布式系统的一致性 ?】

&#x1f60a;引言 &#x1f396;️本篇博文约8000字&#xff0c;阅读大约30分钟&#xff0c;亲爱的读者&#xff0c;如果本博文对您有帮助&#xff0c;欢迎点赞关注&#xff01;&#x1f60a;&#x1f60a;&#x1f60a; &#x1f5a5;️什么是分布式系统的一致性 &#xff1f…...

鸿蒙ArkTS Web组件加载空白的问题原因及解决方案

问题症状 初学鸿蒙开发&#xff0c;按照官方文档Web组件文档《使用Web组件加载页面》示例中的代码照抄运行后显示空白&#xff0c;纠结之余多方搜索后扔无解决方法。 运行代码 import web_webview from ohos.web.webviewEntry Component struct Index {controller: web_webv…...

【JavaEE】-- HTTP

1. HTTP是什么&#xff1f; HTTP&#xff08;全称为"超文本传输协议"&#xff09;是一种应用非常广泛的应用层协议&#xff0c;HTTP是基于TCP协议的一种应用层协议。 应用层协议&#xff1a;是计算机网络协议栈中最高层的协议&#xff0c;它定义了运行在不同主机上…...

《从零掌握MIPI CSI-2: 协议精解与FPGA摄像头开发实战》-- CSI-2 协议详细解析 (一)

CSI-2 协议详细解析 (一&#xff09; 1. CSI-2层定义&#xff08;CSI-2 Layer Definitions&#xff09; 分层结构 &#xff1a;CSI-2协议分为6层&#xff1a; 物理层&#xff08;PHY Layer&#xff09; &#xff1a; 定义电气特性、时钟机制和传输介质&#xff08;导线&#…...

Linux相关概念和易错知识点(42)(TCP的连接管理、可靠性、面临复杂网络的处理)

目录 1.TCP的连接管理机制&#xff08;1&#xff09;三次握手①握手过程②对握手过程的理解 &#xff08;2&#xff09;四次挥手&#xff08;3&#xff09;握手和挥手的触发&#xff08;4&#xff09;状态切换①挥手过程中状态的切换②握手过程中状态的切换 2.TCP的可靠性&…...

【快手拥抱开源】通过快手团队开源的 KwaiCoder-AutoThink-preview 解锁大语言模型的潜力

引言&#xff1a; 在人工智能快速发展的浪潮中&#xff0c;快手Kwaipilot团队推出的 KwaiCoder-AutoThink-preview 具有里程碑意义——这是首个公开的AutoThink大语言模型&#xff08;LLM&#xff09;。该模型代表着该领域的重大突破&#xff0c;通过独特方式融合思考与非思考…...

Spring AI与Spring Modulith核心技术解析

Spring AI核心架构解析 Spring AI&#xff08;https://spring.io/projects/spring-ai&#xff09;作为Spring生态中的AI集成框架&#xff0c;其核心设计理念是通过模块化架构降低AI应用的开发复杂度。与Python生态中的LangChain/LlamaIndex等工具类似&#xff0c;但特别为多语…...

Web 架构之 CDN 加速原理与落地实践

文章目录 一、思维导图二、正文内容&#xff08;一&#xff09;CDN 基础概念1. 定义2. 组成部分 &#xff08;二&#xff09;CDN 加速原理1. 请求路由2. 内容缓存3. 内容更新 &#xff08;三&#xff09;CDN 落地实践1. 选择 CDN 服务商2. 配置 CDN3. 集成到 Web 架构 &#xf…...

使用Spring AI和MCP协议构建图片搜索服务

目录 使用Spring AI和MCP协议构建图片搜索服务 引言 技术栈概览 项目架构设计 架构图 服务端开发 1. 创建Spring Boot项目 2. 实现图片搜索工具 3. 配置传输模式 Stdio模式&#xff08;本地调用&#xff09; SSE模式&#xff08;远程调用&#xff09; 4. 注册工具提…...

基于SpringBoot在线拍卖系统的设计和实现

摘 要 随着社会的发展&#xff0c;社会的各行各业都在利用信息化时代的优势。计算机的优势和普及使得各种信息系统的开发成为必需。 在线拍卖系统&#xff0c;主要的模块包括管理员&#xff1b;首页、个人中心、用户管理、商品类型管理、拍卖商品管理、历史竞拍管理、竞拍订单…...

C#中的CLR属性、依赖属性与附加属性

CLR属性的主要特征 封装性&#xff1a; 隐藏字段的实现细节 提供对字段的受控访问 访问控制&#xff1a; 可单独设置get/set访问器的可见性 可创建只读或只写属性 计算属性&#xff1a; 可以在getter中执行计算逻辑 不需要直接对应一个字段 验证逻辑&#xff1a; 可以…...

DingDing机器人群消息推送

文章目录 1 新建机器人2 API文档说明3 代码编写 1 新建机器人 点击群设置 下滑到群管理的机器人&#xff0c;点击进入 添加机器人 选择自定义Webhook服务 点击添加 设置安全设置&#xff0c;详见说明文档 成功后&#xff0c;记录Webhook 2 API文档说明 点击设置说明 查看自…...