当前位置: 首页 > news >正文

动态规划(Dynamic Programming)

动态规划(Dynamic Programming):是运筹学的一种最优化方法,只不过在计算机问题上应用比较多

DP常见步骤:

  1. 暴力递归/穷举
  2. 记忆化搜索(傻缓存 + 递归),使用备忘录/ DP Table 来优化穷举过程
  3. 严格表结构(整理缓存之间的关系,如dp[i] = dp[i - 1])

例子

509.斐波那契数

1.暴力递归
int fib(int N) {if (N == 1 || N == 2){return 1;}return fib(N - 1) + fib(N - 2);
}

2.记忆化搜索(加缓存)
int fib(int N) {// 备忘录全初始化为 0int[] memo = new int[N + 1];// 进行带备忘录的递归return dp(memo, N);
}// 带着备忘录进行递归
int dp(int[] memo, int n) {// base caseif (n == 0 || n == 1) return n;// 已经计算过,不用再计算了if (memo[n] != 0) return memo[n];memo[n] = dp(memo, n - 1) + dp(memo, n - 2);return memo[n];
}

3.严格表结构(缓存+状态转移方程)
int fib(int N) {if (N == 0) return 0;int[] dp = new int[N + 1];// base casedp[0] = 0; dp[1] = 1;// 状态转移for (int i = 2; i <= N; i++) {dp[i] = dp[i - 1] + dp[i - 2];}return dp[N];
}

4.空间压缩(优化)

由 状态转移方程可知,f(n) 只和 f(n-1) 和 f(n-2) 有关,使用「滚动数组思想」可以把空间复杂度优化成 O(1)

    int fib(int n) {if (n < 2) {return n;}int p = 0, q = 0, r = 1;for (int i = 2; i <= n; ++i) {p = q; q = r; r = p + q;}return r;}

基础类DP

70.爬楼梯

经典动态规划

class Solution {public int climbStairs(int n) {if (n == 1){return 1;}int[] dp = new int[n + 1];dp[1] = 1;dp[2] = 2;for (int i = 3; i <= n; i++) {dp[i] = dp[i - 1] + dp[i - 2];}return dp[n];}
}

空间压缩

class Solution {public int climbStairs(int n) {if (n == 1) {return 1;}int prev = 1;int cur = 2;int next = 0;for (int i = 3; i <= n; i++) {next = cur + prev;prev = cur;cur = next;}return cur;}
}

746.使用最小花费爬楼梯

class Solution {public int minCostClimbingStairs(int[] cost) {int[] dp = new int[cost.length + 2];dp[1] = 0;dp[2] = 0;for (int i = 3; i <= cost.length + 1; i++) {dp[i] = Math.min(dp[i - 1] + cost[i - 2], dp[i - 2] + cost[i - 3]);}return dp[cost.length + 1];}
}

空间压缩

class Solution {public int minCostClimbingStairs(int[] cost) {int prev = 0;int cur = 0;int next = 0;for (int i = 2; i <= cost.length; i++) {next = Math.min(prev + cost[i - 2], cur + cost[i - 1]);prev = cur;cur = next;}return cur;}
}

62.不同路径

class Solution {public int uniquePaths(int m, int n) {if (m <= 0 || n <= 0) {return 0;}int[][] dp = new int[m][n];// base casefor (int i = 0; i < m; i++) {dp[i][0] = 1;}for (int i = 0; i < n; i++) {dp[0][i] = 1;}for (int i = 1; i < m; i++) {for (int j = 1; j < n; j++) {dp[i][j] = dp[i - 1][j] + dp[i][j - 1];}}return dp[m - 1][n - 1];}
}

 路径压缩

class Solution {public int uniquePaths(int m, int n) {if (m <= 0 || n <= 0) {return 0;}int[] dp = new int[n];// base caseArrays.fill(dp, 1);for (int i = 1; i < m; i++) {for (int j = 1; j < n; j++) {dp[j] += dp[j - 1];}}return dp[n - 1];}
}

63.不同路径 II

class Solution {public int uniquePathsWithObstacles(int[][] obstacleGrid) {int row = obstacleGrid.length;int col = obstacleGrid[0].length;int[][] dp = new int[row][col];for (int i = 0; i < row; i++) {if (obstacleGrid[i][0] == 1){break;}dp[i][0] = 1;}for (int i = 0; i < col; i++) {if (obstacleGrid[0][i] == 1){break;}dp[0][i] = 1;}for (int i = 1; i < row; i++) {for (int j = 1; j < col; j++) {dp[i][j] = obstacleGrid[i][j] == 1 ? 0 : dp[i - 1][j] + dp[i][j - 1];}}return dp[row - 1][col - 1];}
}

空间压缩

class Solution {public int uniquePathsWithObstacles(int[][] obstacleGrid) {int row = obstacleGrid.length;int col = obstacleGrid[0].length;if (obstacleGrid[0][0] == 1 || obstacleGrid[row - 1][col - 1] == 1) {return 0;}int[] dp = new int[col];dp[0] = 1;for (int j = 1; j < col; j++) {if (obstacleGrid[0][j] == 1) {break;}dp[j] = 1;}for (int i = 1; i < row; i++) {dp[0] = (obstacleGrid[i][0] == 1 || dp[0] == 0) ? 0 : 1;for (int j = 1; j < col; j++) {dp[j] = obstacleGrid[i][j] == 1 ? 0 : dp[j] + dp[j - 1];}}return dp[col - 1];}
}

64.最小路径和

class Solution {public int minPathSum(int[][] grid) {int row = grid.length;int col = grid[0].length;int[][] dp = new int[row][col];dp[0][0] = grid[0][0];for (int i = 1; i < row; i++) {dp[i][0] = grid[i][0] + dp[i - 1][0];}for (int i = 1; i < col; i++) {dp[0][i] = grid[0][i] + dp[0][i - 1];}for (int i = 1; i < row; i++) {for (int j = 1; j < col; j++) {dp[i][j] = Math.min(dp[i - 1][j], dp[i][j - 1]) + grid[i][j];}}return dp[row - 1][col - 1];}
}

空间压缩

class Solution {public int minPathSum(int[][] grid) {int row = grid.length;int col = grid[0].length;int[] dp = new int[col];dp[0] = grid[0][0];for (int i = 1; i < col; i++) {dp[i] = grid[0][i] + dp[i - 1];}for (int i = 1; i < row; i++) {dp[0] = dp[0] + grid[i][0];for (int j = 1; j < col; j++) {dp[j] = Math.min(dp[j], dp[j - 1]) + grid[i][j];}}return dp[col - 1];}
}

0-1背包类DP

在上述例题中,由于每个物体只有两种可能的状态(取与不取),对应二进制中的0和1,这类问题便被称为「0-1 背包问题」。

  • 01背包最重要的是如何识别出来为01背包,一般是有一个目标堆,对于数组的元素有留和舍两种选择,通过数组值的取舍进行达到目标堆的目的
  • 背包问题进行空间压缩时,weight 的循环要从大到小遍历,否则会造成前段值覆盖引起的答案错误。

416.分割等和子集

class Solution {public boolean canPartition(int[] nums) {int sum = 0;int max = 0;for (int num : nums) {sum += num;max = Math.max(max, num);}int half = sum / 2;if (((sum & 1) == 1) || max > half){return false;}boolean[][] dp = new boolean[nums.length][half + 1];// base casedp[0][0] = true; // 第一个元素不选,容量为0时满足的dp[0][nums[0]] = true; // 选择第一个元素for (int i = 1; i < nums.length; i++) {for (int j = 1; j <= half; j++) {// 不选择 num[i]dp[i][j] = dp[i-1][j];// 保证下标不越界if (j - nums[i] >= 0){// 选择 num[i], 看是否能在 [0, i - 1] 这个子区间内找到一部分元素,使得它们的和为 j - nums[i]dp[i][j] |= dp[i - 1][j - nums[i]];}}// 由于状态转移方程的特殊性,提前结束,可以认为是剪枝操作if (dp[i][half]) {return true;}}return dp[nums.length - 1][half];}
}

空间压缩

class Solution {public boolean canPartition(int[] nums) {int sum = 0;int max = 0;for (int num : nums) {sum += num;max = Math.max(max, num);}int half = sum / 2;if (((sum & 1) == 1) || max > half) {return false;}boolean[] dp = new boolean[half + 1];dp[0] = true;for (int i = 1; i < nums.length; i++) {for (int j = half; j >= nums[i]; j--) {dp[j] |= dp[j - nums[i]];}if (dp[half]) {return true;}}return dp[half];}
}

494.目标和

class Solution {public int findTargetSumWays(int[] nums, int target) {int sum = 0;for (int num : nums) {sum += num;}if (Math.abs(sum) < Math.abs(target)) {return 0;}// 因为包含了负数和 0, range: [-sum, sum]int range = 2 * sum + 1;int[][] dp = new int[nums.length][range];dp[0][sum - nums[0]] += 1;dp[0][sum + nums[0]] += 1;for (int i = 1; i < nums.length; i++) {for (int j = -sum; j <= sum; j++) {if (j + nums[i] > sum) {    // 超过 [-sum, sum] 的范围,只能减dp[i][j + sum] = dp[i - 1][j - nums[i] + sum];} else if (j - nums[i] < -sum) { // 超过 [-sum, sum] 的范围,只能加dp[i][j + sum] = dp[i - 1][j + nums[i] + sum];} else {dp[i][j + sum] = dp[i - 1][j - nums[i] + sum] + dp[i - 1][j + nums[i] + sum];}}}return dp[nums.length - 1][sum + target];}
}

474.一和零

class Solution {public int findMaxForm(String[] strs, int m, int n) {int[][][] dp = new int[strs.length + 1][m + 1][n + 1];for (int i = 1; i <= strs.length; i++) {int zeros = containsZero(strs[i - 1]);int ones = strs[i - 1].length() - zeros;for (int j = 0; j <= m; j++) {for (int k = 0; k <= n; k++) {dp[i][j][k] = dp[i - 1][j][k];if (j >= zeros && k >= ones){dp[i][j][k] = Math.max(dp[i][j][k], dp[i - 1][j - zeros][k - ones] + 1);}}}}return dp[strs.length][m][n];}private int containsZero(String str) {int res = 0;for (char c : str.toCharArray()) {if (c == '0') {res++;}}return res;}
}

空间压缩

class Solution {public int findMaxForm(String[] strs, int m, int n) {int[][] dp = new int[m + 1][n + 1];for (int i = 1; i <= strs.length; i++) {int zeros = containsZero(strs[i - 1]);int ones = strs[i - 1].length() - zeros;for (int j = m; j >= 0; j--) {for (int k = n; k >= 0; k--) {if (j >= zeros && k >= ones){dp[j][k] = Math.max(dp[j][k], dp[j - zeros][k - ones] + 1);}}}}return dp[m][n];}private int containsZero(String str) {int res = 0;for (char c : str.toCharArray()) {if (c == '0') {res++;}}return res;}
}

相关文章:

动态规划(Dynamic Programming)

动态规划&#xff08;Dynamic Programming&#xff09;&#xff1a;是运筹学的一种最优化方法&#xff0c;只不过在计算机问题上应用比较多 DP常见步骤&#xff1a; 暴力递归/穷举记忆化搜索&#xff08;傻缓存 递归&#xff09;,使用备忘录/ DP Table 来优化穷举过程严格表结…...

linux使用文件描述符0、1和2来处理输入和输出

文件描述符012 在Linux中&#xff0c;文件描述符0、1和2分别代表标准输入&#xff08;stdin&#xff09;、标准输出&#xff08;stdout&#xff09;和标准错误&#xff08;stderr&#xff09;。它们用于处理进程的输入和输出。 文件描述符0&#xff08;stdin&#xff09;&…...

how to write and run .ps1

use .txt filechange the suffix to .ps1 from .txt 3&#xff09;how to run .ps1 3.1) PS D:> .\test.ps1 1 2 3 4 5 6 7 8 9 10 3.2) PS D:> tes then press tab key to compensate and complete the whole file name...

如何在PHP中处理跨域请求?

在 PHP 中处理跨域请求&#xff08;CORS&#xff0c;Cross-Origin Resource Sharing&#xff09;&#xff0c;通常需要在服务器端设置相应的 HTTP 头&#xff0c;以允许来自其他域的请求。以下是一些处理跨域请求的方法&#xff1a; 设置 HTTP 头&#xff1a; 在服务器端&#…...

spring boot 配置多数据源 踩坑 BindingException: Invalid bound statement (not found)

在上一篇&#xff1a;《【已解决】Spring Boot多数据源的时候&#xff0c;mybatis报错提示&#xff1a;Invalid bound statement (not found)》 凯哥(凯哥Java) 已经接受了&#xff0c;在Spring Boot配置多数据源时候&#xff0c;因为自己马虎&#xff0c;导致的一个坑。下面&a…...

【产品】Axure的基本使用(二)

文章目录 一、元件基本介绍1.1 概述1.2 元件操作1.3 热区的使用 二、表单型元件的使用2.1 文本框2.2 文本域2.3 下拉列表2.4 列表框2.5 单选按钮2.6 复选框2.7 菜单与表格元件的使用 三、实例3.1 登录2.2 个人简历 一、元件基本介绍 1.1 概述 在Axure RP中&#xff0c;元件是…...

Python语言学习笔记之十(字符串处理)

本课程对于有其它语言基础的开发人员可以参考和学习&#xff0c;同时也是记录下来&#xff0c;为个人学习使用&#xff0c;文档中有此不当之处&#xff0c;请谅解。 字符串处理&#xff1a;以实现字符串的分割、替换、格式化、大小写转换&#xff0c;Python字符串处理是指对Py…...

WPF-附加属性《十二》

非常重要 依赖属性和附加属性&#xff0c;两者是有关系的&#xff0c;也是有些区别的&#xff0c;很多时候&#xff0c;可能会把两者混淆了。 附加属性&#xff08;Attach Property&#xff09; 顾名思义&#xff0c;就是附加上面的属性&#xff0c;自身是没有的&#xff0c;…...

算法通关第十九关-青铜挑战理解动态规划

大家好我是苏麟 , 今天聊聊动态规划 . 动态规划是最热门、最重要的算法思想之一&#xff0c;在面试中大量出现&#xff0c;而且题目整体都偏难一些对于大部人来说&#xff0c;最大的问题是不知道动态规划到底是怎么回事。很多人看教程等&#xff0c;都被里面的状态子问题、状态…...

2023 GitHub年度排行榜,JEECG上榜第三名,势头依然很猛~

2023 GitHub年度排行榜TOP10&#xff0c;JeecgBoot上榜第三名&#xff0c;势头依然很猛~...

由@EnableWebMvc注解引发的Jackson解析异常

同事合了代码到开发分支&#xff0c;并没有涉及到改动的类却报错。错误信息如下&#xff1a; Servlet.service() for servlet [dispatcherServlet] in context with path [] threw exception [Request processing failed; nested exception is org.springframework.http.conv…...

ce从初阶到大牛--函数

1、显示/etc/passwd文件中以bash结尾的行&#xff1b; grep "bash$" /etc/passwd2、找出/etc/passwd文件中的三位或四位数&#xff1b; grep -E \b[0-9]{3,4}\b /etc/passwd3、找出/etc/grub2.cfg文件中&#xff0c;以至少一个空白字符开头&#xff0c;后面又跟了非…...

Java学习异常类

1 定义 异常就是指程序运行时可能出现的一些错误&#xff0c;例如数组越界、除零等。 我们也可以把自己觉得不合理的结果定义为“异常” 2 异常与错误 3 Java中的异常处理 catch语句&#xff1a;对异常的处理语句放在 catch部分&#xff0c;可以包含多个catch语句&#xff0c…...

Python 全栈体系【四阶】(六)

第四章 机器学习 五、线性模型 1. 概述 线性模型是自然界最简单的模型之一&#xff0c;它描述了一个&#xff08;或多个&#xff09;自变量对另一个因变量的影响是呈简单的比例、线性关系。例如&#xff1a; 住房每平米单价为 1 万元&#xff0c;100 平米住房价格为 100 万…...

从memcpy()函数中学习函数的设计思想

memcpy()函数&#xff1a;可以理解为内存拷贝。 他的函数定义如下的 my_memcpy()函数相同。 下面这个函数是我的模拟实现&#xff0c;现在让我们一起来学习一下这个函数的设计思想&#xff1a; void * my_memcpy(void * des, const void* src, size_t size) {void * p des;…...

【PostgreSQL】从零开始:(二)PostgreSQL下载与安装

【PostgreSQL】从零开始:&#xff08;二&#xff09;PostgreSQL下载与安装 Winodws环境下载与安装PostgreSQL下载PostgreSQL安装PostgreSQL1.登录数据库2.查看下我们已有的数据库 Liunx环境下载与安装PostgreSQL使用YUM下载安装PostgreSQL1.下载PostgreSQL安装包2.安装PostgreS…...

PHP的垃圾回收机制是怎样的?

PHP 使用自动垃圾回收机制来管理内存。PHP 的垃圾回收主要依赖于引用计数和周期性垃圾回收两种策略。 引用计数&#xff1a; PHP 使用引用计数来跟踪变量的引用次数。每当一个变量被引用&#xff0c;其引用计数就增加&#xff1b;每当一个引用被释放&#xff0c;计数就减少。当…...

【数据结构】八大排序之希尔排序算法

&#x1f984;个人主页:修修修也 &#x1f38f;所属专栏:数据结构 ⚙️操作环境:Visual Studio 2022 一.优化直接插入排序算法 我们在之前对直接插入排序算法的优化部分通过对直接插入排序的分析可以得到一个结论,即: 进行直接插入排序的数组,如果越接近局部有序,则后续进行直…...

NestJS使用gRPC实现微服务通信

代码仓库地址&#xff1a;https://github.com/zeng-jc/rpc-grpc-practice 1.1 基本概念 gRPC 基于 Protocol Buffers&#xff08;protobuf&#xff09;作为接口定义语言&#xff08;IDL&#xff09;&#xff0c;意味着你可以使用 protobuf 来定义你的服务接口&#xff0c;gRP…...

Android手机使用Termux终端模拟器

Termux 是 Android 平台上的一个终端模拟器&#xff0c;可以在 Android 手机上模拟 Linux 环境。它提供命令行界面&#xff0c;并且提供了功能健全的包管理工具&#xff08;pkg&#xff09;。另外就是 Termux 不需要 root 权限&#xff0c;安装后默认产生一个用户&#xff0c;可…...

Flask RESTful 示例

目录 1. 环境准备2. 安装依赖3. 修改main.py4. 运行应用5. API使用示例获取所有任务获取单个任务创建新任务更新任务删除任务 中文乱码问题&#xff1a; 下面创建一个简单的Flask RESTful API示例。首先&#xff0c;我们需要创建环境&#xff0c;安装必要的依赖&#xff0c;然后…...

iOS 26 携众系统重磅更新,但“苹果智能”仍与国行无缘

美国西海岸的夏天&#xff0c;再次被苹果点燃。一年一度的全球开发者大会 WWDC25 如期而至&#xff0c;这不仅是开发者的盛宴&#xff0c;更是全球数亿苹果用户翘首以盼的科技春晚。今年&#xff0c;苹果依旧为我们带来了全家桶式的系统更新&#xff0c;包括 iOS 26、iPadOS 26…...

【Linux】C语言执行shell指令

在C语言中执行Shell指令 在C语言中&#xff0c;有几种方法可以执行Shell指令&#xff1a; 1. 使用system()函数 这是最简单的方法&#xff0c;包含在stdlib.h头文件中&#xff1a; #include <stdlib.h>int main() {system("ls -l"); // 执行ls -l命令retu…...

视频字幕质量评估的大规模细粒度基准

大家读完觉得有帮助记得关注和点赞&#xff01;&#xff01;&#xff01; 摘要 视频字幕在文本到视频生成任务中起着至关重要的作用&#xff0c;因为它们的质量直接影响所生成视频的语义连贯性和视觉保真度。尽管大型视觉-语言模型&#xff08;VLMs&#xff09;在字幕生成方面…...

土地利用/土地覆盖遥感解译与基于CLUE模型未来变化情景预测;从基础到高级,涵盖ArcGIS数据处理、ENVI遥感解译与CLUE模型情景模拟等

&#x1f50d; 土地利用/土地覆盖数据是生态、环境和气象等诸多领域模型的关键输入参数。通过遥感影像解译技术&#xff0c;可以精准获取历史或当前任何一个区域的土地利用/土地覆盖情况。这些数据不仅能够用于评估区域生态环境的变化趋势&#xff0c;还能有效评价重大生态工程…...

【C语言练习】080. 使用C语言实现简单的数据库操作

080. 使用C语言实现简单的数据库操作 080. 使用C语言实现简单的数据库操作使用原生APIODBC接口第三方库ORM框架文件模拟1. 安装SQLite2. 示例代码:使用SQLite创建数据库、表和插入数据3. 编译和运行4. 示例运行输出:5. 注意事项6. 总结080. 使用C语言实现简单的数据库操作 在…...

QT: `long long` 类型转换为 `QString` 2025.6.5

在 Qt 中&#xff0c;将 long long 类型转换为 QString 可以通过以下两种常用方法实现&#xff1a; 方法 1&#xff1a;使用 QString::number() 直接调用 QString 的静态方法 number()&#xff0c;将数值转换为字符串&#xff1a; long long value 1234567890123456789LL; …...

什么?连接服务器也能可视化显示界面?:基于X11 Forwarding + CentOS + MobaXterm实战指南

文章目录 什么是X11?环境准备实战步骤1️⃣ 服务器端配置(CentOS)2️⃣ 客户端配置(MobaXterm)3️⃣ 验证X11 Forwarding4️⃣ 运行自定义GUI程序(Python示例)5️⃣ 成功效果![在这里插入图片描述](https://i-blog.csdnimg.cn/direct/55aefaea8a9f477e86d065227851fe3d.pn…...

Typeerror: cannot read properties of undefined (reading ‘XXX‘)

最近需要在离线机器上运行软件&#xff0c;所以得把软件用docker打包起来&#xff0c;大部分功能都没问题&#xff0c;出了一个奇怪的事情。同样的代码&#xff0c;在本机上用vscode可以运行起来&#xff0c;但是打包之后在docker里出现了问题。使用的是dialog组件&#xff0c;…...

初探Service服务发现机制

1.Service简介 Service是将运行在一组Pod上的应用程序发布为网络服务的抽象方法。 主要功能&#xff1a;服务发现和负载均衡。 Service类型的包括ClusterIP类型、NodePort类型、LoadBalancer类型、ExternalName类型 2.Endpoints简介 Endpoints是一种Kubernetes资源&#xf…...