当前位置: 首页 > news >正文

深度学习中的13种概率分布

1 概率分布概述

d3d991a320f84158872f0b73a7346cbe.png

  • 共轭意味着它有共轭分布的关系。

在贝叶斯概率论中,如果后验分布 p(θx)与先验概率分布 p(θ)在同一概率分布族中,则先验和后验称为共轭分布,先验称为似然函数的共轭先验。

  • 多分类表示随机方差大于 2。

  • n 次意味着我们也考虑了先验概率 p(x)。

2 分布概率与特征

2.1 均匀分布(连续)

均匀分布在 [a,b] 上具有相同的概率值,是简单概率分布。

示例代码:

import numpy as np
from matplotlib import pyplot as pltdef uniform(x, a, b):y = [1 / (b - a) if a <= val and val <= belse 0 for val in x]return x, y, np.mean(y), np.std(y)x = np.arange(-100, 100) # define range of x
for ls in [(-50, 50), (10, 20)]:a, b = ls[0], ls[1]x, y, u, s = uniform(x, a, b)plt.plot(x, y, label=r'$\mu=%.2f,\ \sigma=%.2f$' % (u, s))plt.legend()
plt.show()

运行代码显示:

b5e207c3f6b546f9981f9560f7a5b4d9.png

2.2 伯努利分布(离散)

  • 先验概率 p(x)不考虑伯努利分布。因此,如果我们对最大似然进行优化,那么我们很容易被过度拟合。

  • 利用二元交叉熵对二项分类进行分类。它的形式与伯努利分布的负对数相同。

示例代码:

import random
import numpy as np
from matplotlib import pyplot as pltdef bernoulli(p, k):return p if k else 1 - pn_experiment = 100
p = 0.6
x = np.arange(n_experiment)
y = []
for _ in range(n_experiment):pick = bernoulli(p, k=bool(random.getrandbits(1)))y.append(pick)u, s = np.mean(y), np.std(y)
plt.scatter(x, y, label=r'$\mu=%.2f,\ \sigma=%.2f$' % (u, s))
plt.legend()
plt.show()

运行代码显示:

6638381a82cb4bd0b7204fb0360163b1.png

2.3 二项分布(离散)

  • 参数为 n 和 p 的二项分布是一系列 n 个独立实验中成功次数的离散概率分布。

  • 二项式分布是指通过指定要提前挑选的数量而考虑先验概率的分布。

示例代码:

import numpy as np
from matplotlib import pyplot as pltimport operator as op
from functools import reducedef const(n, r):r = min(r, n-r)numer = reduce(op.mul, range(n, n-r, -1), 1)denom = reduce(op.mul, range(1, r+1), 1)return numer / denomdef binomial(n, p):q = 1 - py = [const(n, k) * (p ** k) * (q ** (n-k)) for k in range(n)]return y, np.mean(y), np.std(y)for ls in [(0.5, 20), (0.7, 40), (0.5, 40)]:p, n_experiment = ls[0], ls[1]x = np.arange(n_experiment)y, u, s = binomial(n_experiment, p)plt.scatter(x, y, label=r'$\mu=%.2f,\ \sigma=%.2f$' % (u, s))plt.legend()
plt.show()

运行代码显示:

30555ee71170430fae90af850f5123ec.png

2.4 多伯努利分布,分类分布(离散)

  • 多伯努利称为分类分布。

  • 交叉熵和采取负对数的多伯努利分布具有相同的形式。

示例代码:

import random
import numpy as np
from matplotlib import pyplot as pltdef categorical(p, k):return p[k]n_experiment = 100
p = [0.2, 0.1, 0.7]
x = np.arange(n_experiment)
y = []
for _ in range(n_experiment):pick = categorical(p, k=random.randint(0, len(p) - 1))y.append(pick)u, s = np.mean(y), np.std(y)
plt.scatter(x, y, label=r'$\mu=%.2f,\ \sigma=%.2f$' % (u, s))
plt.legend()
plt.show()

运行代码显示:

7ee7365db9864858be3292a53422043b.png

2.5 多项式分布(离散)

多项式分布与分类分布的关系与伯努尔分布与二项分布的关系相同。

示例代码:

import numpy as np
from matplotlib import pyplot as pltimport operator as op
from functools import reducedef factorial(n):return reduce(op.mul, range(1, n + 1), 1)def const(n, a, b, c):"""return n! / a! b! c!, where a+b+c == n"""assert  a + b + c == nnumer = factorial(n)denom = factorial(a) * factorial(b) * factorial(c)return numer / denomdef multinomial(n):""":param x : list, sum(x) should be `n`:param n : number of trial:param p: list, sum(p) should be `1`"""# get all a,b,c where a+b+c == n, a<b<cls = []for i in range(1, n + 1):for j in range(i, n + 1):for k in range(j, n + 1):if i + j + k == n:ls.append([i, j, k])y = [const(n, l[0], l[1], l[2]) for l in ls]x = np.arange(len(y))return x, y, np.mean(y), np.std(y)for n_experiment in [20, 21, 22]:x, y, u, s = multinomial(n_experiment)plt.scatter(x, y, label=r'$trial=%d$' % (n_experiment))plt.legend()
plt.show()

运行代码显示:

21b9679b43de462694db82542372a452.png

2.6 β分布(连续)

  • β分布与二项分布和伯努利分布共轭。

  • 利用共轭,利用已知的先验分布可以更容易地得到后验分布。

  • 当β分布满足特殊情况(α=1,β=1)时,均匀分布是相同的。

示例代码:

import numpy as np
from matplotlib import pyplot as pltdef gamma_function(n):cal = 1for i in range(2, n):cal *= ireturn caldef beta(x, a, b):gamma = gamma_function(a + b) / \(gamma_function(a) * gamma_function(b))y = gamma * (x ** (a - 1)) * ((1 - x) ** (b - 1))return x, y, np.mean(y), np.std(y)for ls in [(1, 3), (5, 1), (2, 2), (2, 5)]:a, b = ls[0], ls[1]# x in [0, 1], trial is 1/0.001 = 1000x = np.arange(0, 1, 0.001, dtype=np.float)x, y, u, s = beta(x, a=a, b=b)plt.plot(x, y, label=r'$\mu=%.2f,\ \sigma=%.2f,'r'\ \alpha=%d,\ \beta=%d$' % (u, s, a, b))
plt.legend()
plt.show()

运行代码显示:

3626bfcc60bc403e8de5a04e80d28254.png

2.7 Dirichlet 分布(连续)

  • dirichlet 分布与多项式分布是共轭的。

  • 如果 k=2,则为β分布。

示例代码:

from random import randint
import numpy as np
from matplotlib import pyplot as pltdef normalization(x, s):""":return: normalizated list, where sum(x) == s"""return [(i * s) / sum(x) for i in x]def sampling():return normalization([randint(1, 100),randint(1, 100), randint(1, 100)], s=1)def gamma_function(n):cal = 1for i in range(2, n):cal *= ireturn caldef beta_function(alpha):""":param alpha: list, len(alpha) is k:return:"""numerator = 1for a in alpha:numerator *= gamma_function(a)denominator = gamma_function(sum(alpha))return numerator / denominatordef dirichlet(x, a, n):""":param x: list of [x[1,...,K], x[1,...,K], ...], shape is (n_trial, K):param a: list of coefficient, a_i > 0:param n: number of trial:return:"""c = (1 / beta_function(a))y = [c * (xn[0] ** (a[0] - 1)) * (xn[1] ** (a[1] - 1))* (xn[2] ** (a[2] - 1)) for xn in x]x = np.arange(n)return x, y, np.mean(y), np.std(y)n_experiment = 1200
for ls in [(6, 2, 2), (3, 7, 5), (6, 2, 6), (2, 3, 4)]:alpha = list(ls)# random samping [x[1,...,K], x[1,...,K], ...], shape is (n_trial, K)# each sum of row should be one.x = [sampling() for _ in range(1, n_experiment + 1)]x, y, u, s = dirichlet(x, alpha, n=n_experiment)plt.plot(x, y, label=r'$\alpha=(%d,%d,%d)$' % (ls[0], ls[1], ls[2]))plt.legend()
plt.show()

运行代码显示:

a2cb19e178b54e59884804f8d84c3334.png

2.8 伽马分布(连续)

  • 如果 gamma(a,1)/gamma(a,1)+gamma(b,1)与 beta(a,b)相同,则 gamma 分布为β分布。

  • 指数分布和卡方分布是伽马分布的特例。

代码示例:

import numpy as np
from matplotlib import pyplot as pltdef gamma_function(n):cal = 1for i in range(2, n):cal *= ireturn caldef gamma(x, a, b):c = (b ** a) / gamma_function(a)y = c * (x ** (a - 1)) * np.exp(-b * x)return x, y, np.mean(y), np.std(y)for ls in [(1, 1), (2, 1), (3, 1), (2, 2)]:a, b = ls[0], ls[1]x = np.arange(0, 20, 0.01, dtype=np.float)x, y, u, s = gamma(x, a=a, b=b)plt.plot(x, y, label=r'$\mu=%.2f,\ \sigma=%.2f,'r'\ \alpha=%d,\ \beta=%d$' % (u, s, a, b))
plt.legend()
plt.show()

运行代码显示:

1009001a4a754f21947db41db2d12c0b.png

2.9 指数分布(连续)

指数分布是 α 为 1 时 γ 分布的特例。

import numpy as np
from matplotlib import pyplot as pltdef exponential(x, lamb):y = lamb * np.exp(-lamb * x)return x, y, np.mean(y), np.std(y)for lamb in [0.5, 1, 1.5]:x = np.arange(0, 20, 0.01, dtype=np.float)x, y, u, s = exponential(x, lamb=lamb)plt.plot(x, y, label=r'$\mu=%.2f,\ \sigma=%.2f,'r'\ \lambda=%d$' % (u, s, lamb))
plt.legend()
plt.show()

运行代码显示

c97ec2c0d4f44ade97e214e78cf70650.png

2.10 高斯分布(连续)

高斯分布是一种非常常见的连续概率分布。

示例代码:

import numpy as np
from matplotlib import pyplot as pltdef gaussian(x, n):u = x.mean()s = x.std()# divide [x.min(), x.max()] by nx = np.linspace(x.min(), x.max(), n)a = ((x - u) ** 2) / (2 * (s ** 2))y = 1 / (s * np.sqrt(2 * np.pi)) * np.exp(-a)return x, y, x.mean(), x.std()x = np.arange(-100, 100) # define range of x
x, y, u, s = gaussian(x, 10000)plt.plot(x, y, label=r'$\mu=%.2f,\ \sigma=%.2f$' % (u, s))
plt.legend()
plt.show()

运行代码显示:

72168899350446a3b6e2748244a26d6f.png

2.11 标准正态分布(连续)

标准正态分布为特殊的高斯分布,平均值为 0,标准差为 1。

import numpy as np
from matplotlib import pyplot as pltdef normal(x, n):u = x.mean()s = x.std()# normalizationx = (x - u) / s# divide [x.min(), x.max()] by nx = np.linspace(x.min(), x.max(), n)a = ((x - 0) ** 2) / (2 * (1 ** 2))y = 1 / (s * np.sqrt(2 * np.pi)) * np.exp(-a)return x, y, x.mean(), x.std()x = np.arange(-100, 100) # define range of x
x, y, u, s = normal(x, 10000)plt.plot(x, y, label=r'$\mu=%.2f,\ \sigma=%.2f$' % (u, s))
plt.legend()
plt.show()

运行代码显示:

1d47e619ea3145dba3d6b45ef956ea93.png

2.12 卡方分布(连续)

  • k 自由度的卡方分布是 k 个独立标准正态随机变量的平方和的分布。

  • 卡方分布是 β 分布的特例

示例代码:

import numpy as np
from matplotlib import pyplot as pltdef gamma_function(n):cal = 1for i in range(2, n):cal *= ireturn caldef chi_squared(x, k):c = 1 / (2 ** (k/2)) * gamma_function(k//2)y = c * (x ** (k/2 - 1)) * np.exp(-x /2)return x, y, np.mean(y), np.std(y)for k in [2, 3, 4, 6]:x = np.arange(0, 10, 0.01, dtype=np.float)x, y, _, _ = chi_squared(x, k)plt.plot(x, y, label=r'$k=%d$' % (k))plt.legend()
plt.show()

运行代码显示

45847e204210461a94099453422c31d2.png

2.13 t 分布(连续)

t 分布是对称的钟形分布,与正态分布类似,但尾部较重,这意味着它更容易产生远低于平均值的值。

示例代码:

import numpy as np
from matplotlib import pyplot as pltdef gamma_function(n):cal = 1for i in range(2, n):cal *= ireturn caldef student_t(x, freedom, n):# divide [x.min(), x.max()] by nx = np.linspace(x.min(), x.max(), n)c = gamma_function((freedom + 1) // 2) \/ np.sqrt(freedom * np.pi) * gamma_function(freedom // 2)y = c * (1 + x**2 / freedom) ** (-((freedom + 1) / 2))return x, y, np.mean(y), np.std(y)for freedom in [1, 2, 5]:x = np.arange(-10, 10) # define range of xx, y, _, _ = student_t(x, freedom=freedom, n=10000)plt.plot(x, y, label=r'$v=%d$' % (freedom))plt.legend()
plt.show()

运行代码显示

84ec7b8d6794491fa4b904b23840fcd9.png

 

相关文章:

深度学习中的13种概率分布

1 概率分布概述 共轭意味着它有共轭分布的关系。 在贝叶斯概率论中&#xff0c;如果后验分布 p&#xff08;θx&#xff09;与先验概率分布 p&#xff08;θ&#xff09;在同一概率分布族中&#xff0c;则先验和后验称为共轭分布&#xff0c;先验称为似然函数的共轭先验。 多…...

C#基础知识 - 操作数与运算符篇2

C#基础知识 - 操作数与运算符篇 4.2 运算符4.2.1 按操作数个数分类4.2.2 按运算类型分类4.2.3 对运算符 、-- 的使用4.2.4 关系运算符&#xff1a;>、 < 、> 、<、 ! 、4.2.5 逻辑运算符&#xff1a;&& || ! ^ & |4.2.6 位运算符&#xff1a;~ 、^、 &…...

第十五章总结

一.输入/输出流 1.输入流 InputStrema类是字节输入流的抽象类&#xff0c;它是所有字节输入流的父类。 该类中所有方法遇到错误都会引发IOException异常。 read()方法&#xff1a;从输入流中读取数据的下一个字节。返回0~255的int字节值。如果因为已经到达流末尾而没有可用的…...

音频I2S

前言 基于网上资料对相关概念做整理汇总&#xff0c;部分内容引用自文后文章。 学习目标&#xff1a;简单了解相关概念、相关协议。 1 概述 数字音频接口DAI&#xff0c;即Digital Audio Interfaces&#xff0c;顾名思义&#xff0c;DAI表示在板级或板间传输数字音频信…...

小程序中的合法域名的作用及条件有哪些?

小程序的合法域名是指小程序项目中使用的各种接口、资源文件等所在的域名。在小程序开发中&#xff0c;需要将这些域名添加到小程序后台的“开发设置”-“服务器域名”中进行配置&#xff0c;才能够正常使用。 合法域名的作用&#xff1a; 1.作为小程序请求的 API 服务器域名…...

SpringData JPA 整合Springboot

1.导入依赖 <?xml version"1.0" encoding"UTF-8"?> <project xmlns"http://maven.apache.org/POM/4.0.0"xmlns:xsi"http://www.w3.org/2001/XMLSchema-instance"xsi:schemaLocation"http://maven.apache.org/POM/4.0…...

打工人副业变现秘籍,某多/某手变现底层引擎-Stable Diffusion 黑白老照片上色修复

在这个时代,我们习惯于拥有高清、色彩丰富的照片,然而,那些古老的黑白色老照片由于年代的久远,往往会出现模糊、破损等现象。 那么今天要给大家介绍的是,用 Stable Diffusion 来修复老照片。 前段时间 ControlNet 的除了上线了“IP-Adapter”模型以外还增加另一个…...

第十三章总结

一.泛型 1.定义泛型类 泛型机制语法&#xff1a; 类名<T> 其中&#xff0c;T是泛型的名称&#xff0c;代表某一种类型。 【例13.6】创建带泛型的图书类 代码&#xff1a; 结果&#xff1a; 2.泛型的常规用法 (1)定义泛型类时声明多个变量 class MyClass<T1,T2…...

大模型应用_PrivateGPT

https://github.com/imartinez/privateGPT 1 功能 整体功能&#xff0c;想解决什么问题 搭建完整的 RAG 系统&#xff0c;与 FastGPT相比&#xff0c;界面比较简单。但是底层支持比较丰富&#xff0c;可用于知识库的完全本地部署&#xff0c;包含大模型和向量库。适用于保密级…...

[Android] ubuntu虚拟机上搭建 Waydroid 环境

1.安装虚拟机 略 2.安装waydroid Ubuntu/Debian and derivatives For Droidian and Ubuntu Touch, skip directly to the last step Install pre-requisites sudo apt install curl ca-certificates -y Add the official repository curl https://repo.waydro.id | sudo…...

LeedCode刷题---滑动窗口问题(二)

顾得泉&#xff1a;个人主页 个人专栏&#xff1a;《Linux操作系统》 《C/C》 《LeedCode刷题》 键盘敲烂&#xff0c;年薪百万&#xff01; 一、将X减到0的最小操作数 题目链接&#xff1a;将 x 减到 0 的最小操作数 题目描述 给你一个整数数组 nums 和一个整数 x 。每一…...

pycharm依赖管理(不要用pip freeze)

在使用python虚拟环境时&#xff0c;可以使用requirements.txt来管理当前项目的依赖。 注意&#xff0c;不要用 pip freeze > requirements.txt 这个命令&#xff0c;因为它会引入很多无关的包。 可以使用 pipreqs ./ --encodingutf-8 ./ 表示当前项目的目录&#xff0…...

[Kafka 常见面试题]如何保证消息的不重复不丢失

文章目录 Kafka1. Kafka如何保证不丢失消息&#xff1f;生产者数据的不丢失消费者数据的不丢失Kafka集群中的broker的数据不丢失 2. Kafka中的消息是否会丢失和重复消费&#xff1f;1. 消息发送2. 消息消费 3. Kafka 的设计是什么样的呢&#xff1f;4. 数据传输的事务定义有哪三…...

Java中System.setProperty()用法

Java中System.setProperty()用法 大家好&#xff0c;我是免费搭建查券返利机器人赚佣金就用微赚淘客系统3.0的小编&#xff0c;也是冬天不穿秋裤&#xff0c;天冷也要风度的程序猿&#xff01;今天&#xff0c;让我们一起深入了解Java中的System.setProperty()方法&#xff0c…...

Eclipse 自动生成注解,如果是IDEA可以参考编译器自带模版进行修改

IDEA添加自动注解 左上角选择 File -> Settings -> Editor -> File and Code Templates&#xff1b; 1、添加class文件自动注解&#xff1a; ​/*** <b>Function: </b> todo* program: ${NAME}* Package: ${PACKAGE_NAME}* author: Jerry* date: ${YEA…...

微信小程序vant安装使用过程中遇到无法构建npm的问题

官网地址&#xff0c;然而如果完全按照这个教程来&#xff0c;实际上是缺少步骤的&#xff0c;需要补充一些步骤&#xff08;参考https://www.bilibili.com/video/BV1vL41127Er&#xff09; # 这步init就是补充的 npm init npm i vant/weapp -S --production# 剩下的按照vant的…...

[python]用python获取EXCEL文件内容并保存到DBC

目录 关键词平台说明背景所需库实现过程方法1.1.安装相关库2.代码实现 关键词 python、excel、DBC、openpyxl 平台说明 项目Valuepython版本3.6 背景 在搭建自动化测试平台的时候经常会提取DBC文件中的信息并保存为excel或者其他文件格式&#xff0c;用于自动化测试。本文…...

Spring Boot 如何配置 log4j2

Log4j2 介绍 Spring Boot 中默认使用 Logback 作为日志框架&#xff0c;接下来我们将学习如何在 Spring Boot 中集成与配置 Log4j2。在配置之前&#xff0c;我们需要知道的是 Log4j2 是 Log4j 的升级版&#xff0c;它在 Log4j 的基础上做了诸多改进&#xff1a; 异步日志&…...

如何安装docker

安装Docker的步骤取决于您使用的操作系统。以下是常见操作系统上安装Docker的基本步骤&#xff1a; 对于Linux: 更新软件包索引&#xff1a; sudo apt-get update安装允许apt通过HTTPS使用仓库的包&#xff1a; sudo apt-get install apt-transport-https ca-certificates cur…...

Linux 之 性能优化

uptime $ uptime -p up 1 week, 1 day, 21 hours, 27 minutes$ uptime12:04:11 up 8 days, 21:27, 1 user, load average: 0.54, 0.32, 0.23“12:04:11” 表示当前时间“up 8 days, 21:27,” 表示运行了多长时间“load average: 0.54, 0.32, 0.23”“1 user” 表示 正在登录…...

智慧医疗能源事业线深度画像分析(上)

引言 医疗行业作为现代社会的关键基础设施,其能源消耗与环境影响正日益受到关注。随着全球"双碳"目标的推进和可持续发展理念的深入,智慧医疗能源事业线应运而生,致力于通过创新技术与管理方案,重构医疗领域的能源使用模式。这一事业线融合了能源管理、可持续发…...

docker详细操作--未完待续

docker介绍 docker官网: Docker&#xff1a;加速容器应用程序开发 harbor官网&#xff1a;Harbor - Harbor 中文 使用docker加速器: Docker镜像极速下载服务 - 毫秒镜像 是什么 Docker 是一种开源的容器化平台&#xff0c;用于将应用程序及其依赖项&#xff08;如库、运行时环…...

Admin.Net中的消息通信SignalR解释

定义集线器接口 IOnlineUserHub public interface IOnlineUserHub {/// 在线用户列表Task OnlineUserList(OnlineUserList context);/// 强制下线Task ForceOffline(object context);/// 发布站内消息Task PublicNotice(SysNotice context);/// 接收消息Task ReceiveMessage(…...

MongoDB学习和应用(高效的非关系型数据库)

一丶 MongoDB简介 对于社交类软件的功能&#xff0c;我们需要对它的功能特点进行分析&#xff1a; 数据量会随着用户数增大而增大读多写少价值较低非好友看不到其动态信息地理位置的查询… 针对以上特点进行分析各大存储工具&#xff1a; mysql&#xff1a;关系型数据库&am…...

Day131 | 灵神 | 回溯算法 | 子集型 子集

Day131 | 灵神 | 回溯算法 | 子集型 子集 78.子集 78. 子集 - 力扣&#xff08;LeetCode&#xff09; 思路&#xff1a; 笔者写过很多次这道题了&#xff0c;不想写题解了&#xff0c;大家看灵神讲解吧 回溯算法套路①子集型回溯【基础算法精讲 14】_哔哩哔哩_bilibili 完…...

STM32标准库-DMA直接存储器存取

文章目录 一、DMA1.1简介1.2存储器映像1.3DMA框图1.4DMA基本结构1.5DMA请求1.6数据宽度与对齐1.7数据转运DMA1.8ADC扫描模式DMA 二、数据转运DMA2.1接线图2.2代码2.3相关API 一、DMA 1.1简介 DMA&#xff08;Direct Memory Access&#xff09;直接存储器存取 DMA可以提供外设…...

【快手拥抱开源】通过快手团队开源的 KwaiCoder-AutoThink-preview 解锁大语言模型的潜力

引言&#xff1a; 在人工智能快速发展的浪潮中&#xff0c;快手Kwaipilot团队推出的 KwaiCoder-AutoThink-preview 具有里程碑意义——这是首个公开的AutoThink大语言模型&#xff08;LLM&#xff09;。该模型代表着该领域的重大突破&#xff0c;通过独特方式融合思考与非思考…...

selenium学习实战【Python爬虫】

selenium学习实战【Python爬虫】 文章目录 selenium学习实战【Python爬虫】一、声明二、学习目标三、安装依赖3.1 安装selenium库3.2 安装浏览器驱动3.2.1 查看Edge版本3.2.2 驱动安装 四、代码讲解4.1 配置浏览器4.2 加载更多4.3 寻找内容4.4 完整代码 五、报告文件爬取5.1 提…...

代理篇12|深入理解 Vite中的Proxy接口代理配置

在前端开发中,常常会遇到 跨域请求接口 的情况。为了解决这个问题,Vite 和 Webpack 都提供了 proxy 代理功能,用于将本地开发请求转发到后端服务器。 什么是代理(proxy)? 代理是在开发过程中,前端项目通过开发服务器,将指定的请求“转发”到真实的后端服务器,从而绕…...

华硕a豆14 Air香氛版,美学与科技的馨香融合

在快节奏的现代生活中&#xff0c;我们渴望一个能激发创想、愉悦感官的工作与生活伙伴&#xff0c;它不仅是冰冷的科技工具&#xff0c;更能触动我们内心深处的细腻情感。正是在这样的期许下&#xff0c;华硕a豆14 Air香氛版翩然而至&#xff0c;它以一种前所未有的方式&#x…...