当前位置: 首页 > news >正文

智能优化算法应用:基于JAYA算法3D无线传感器网络(WSN)覆盖优化 - 附代码

智能优化算法应用:基于JAYA算法3D无线传感器网络(WSN)覆盖优化 - 附代码

文章目录

  • 智能优化算法应用:基于JAYA算法3D无线传感器网络(WSN)覆盖优化 - 附代码
    • 1.无线传感网络节点模型
    • 2.覆盖数学模型及分析
    • 3.JAYA算法
    • 4.实验参数设定
    • 5.算法结果
    • 6.参考文献
    • 7.MATLAB代码

摘要:本文主要介绍如何用JAYA算法进行3D无线传感器网(WSN)覆盖优化。

1.无线传感网络节点模型

本文主要基于0/1模型,进行寻优。在二维平面上传感器节点的感知范围是一个以节点为圆心,半径为 R n R_n Rn的圆形区域,该圆形区域通常被称为该节点的“感知圆盘”, R n R_n Rn称为传感器节点的感知半径,感知半径与节点内置传感器件的物理特性有关,假设节点 n n n的位置坐标为 ( x n , y n , z n ) (x_n,y_n,z_n) (xn,yn,zn)在0-1感知模型中,对于平面上任意一点 p ( x p , y p , z p ) p(x_p,y_p,z_p) p(xp,yp,zp),则节点 n n n监测到区域内点 p p p的事件发生概率为:
P r ( n , p ) = { 1 , d ( n , p ) ≤ R n 0 , e s l e (1) P_r(n,p)=\begin{cases}1, \,d(n,p)\leq R_n\\ 0,\, esle \end{cases}\tag{1} Pr(n,p)={1,d(n,p)Rn0,esle(1)
其中 d ( n , p ) = ( x n − x p ) 2 + ( y n − y p ) 2 + ( z n − z p ) 2 d(n,p)=\sqrt{(x_n-x_p)^2+(y_n-y_p)^2 + (z_n-z_p)^2} d(n,p)=(xnxp)2+(ynyp)2+(znzp)2 为点和之间的欧式距离。

2.覆盖数学模型及分析

现假定目标监测区域为二维平面,在区域 A r e a Area Area上投放同型结构传感器节点的数目为N,每个节点的位置坐标值假设已被初始化赋值,且节点的感知半径r。传感器节点集则表示为:
N o d e { x 1 , . . . , x N } (2) Node\{x_1,...,x_N\} \tag{2} Node{x1,...,xN}(2)
其中 n o d e i = { x i , y i , z i , r } node_i=\{x_i,y_i,z_i,r\} nodei={xi,yi,zi,r},表示以节点 ( x i , y i , z i ) (x_i,y_i,z_i) (xi,yi,zi)为圆心,r为监测半径的球,假定监测区域 A r e a Area Area被数字化离散为 m ∗ n ∗ l m*n*l mnl个空间点,空间点的坐标为 ( x , y , z ) (x,y,z) (x,y,z),目标点与传感器节点间的距离为:
d ( n o d e i , p ) = ( x i − x ) 2 + ( y i − y ) 2 + ( z i − z ) 2 (3) d(node_i,p)=\sqrt{(x_i-x)^2+(y_i-y)^2 + (z_i-z)^2}\tag{3} d(nodei,p)=(xix)2+(yiy)2+(ziz)2 (3)
目标区域内点被传感器节点所覆盖的事件定义为 c i c_i ci。则该事件发生的概率 P c i P{c_i} Pci即为点 ( x , y , z ) (x,y,z) (x,y,z)被传感器节点 n o d e i node_i nodei所覆盖的概率:
P c o v ( x , y , z , n o d e i ) = { 1 , i f d ( n o d e i , p ) ≤ r 0 , e s l e (4) P_{cov}(x,y,z,node_i)=\begin{cases}1, if\,d(node_i,p)\leq r\\ 0,\, esle \end{cases}\tag{4} Pcov(x,y,z,nodei)={1,ifd(nodei,p)r0,esle(4)
我们将所有的传感器节点在目标监测环境中的区域覆盖率 C o v e r R a t i o CoverRatio CoverRatio定义为传感器节点集的覆盖面积与监测区域的面积之比,如公式所示:
C o v e r R a t i o = ∑ P c o v m ∗ n ∗ l (5) CoverRatio = \frac{\sum P_{cov}}{m*n*l}\tag{5} CoverRatio=mnlPcov(5)
那我们的最终目标就是找到一组节点使得覆盖率最大。

3.JAYA算法

JAYA算法原理请参考:https://blog.csdn.net/u011835903/article/details/115572600
JAYA算法是寻找最小值。于是适应度函数定义为未覆盖率最小,即覆盖率最大。如下:
f u n = a r g m i n ( 1 − C o v e r R a t i o ) = a r g m i n ( 1 − ∑ P c o v m ∗ n ∗ l ) (6) fun = argmin(1 - CoverRatio) = argmin(1-\frac{\sum P_{cov}}{m*n*l}) \tag{6} fun=argmin(1CoverRatio)=argmin(1mnlPcov)(6)

4.实验参数设定

无线传感器覆盖参数设定如下:

%% 设定WNS覆盖参数,
%% 默认输入参数都是整数,如果想定义小数,请自行乘以系数变为整数再做转换。
%% 比如范围1*1,R=0.03可以转换为100*100,R=3;
%区域范围为AreaX*AreaY*AreaZ
AreaX = 100;
AreaY = 100;
AreaZ = 100;
N = 20 ;%覆盖节点数
R = 15;%通信半径

JAYA算法参数如下:

%% 设定JAYA优化参数
pop=30; % 种群数量
Max_iteration=30; %设定最大迭代次数
lb = ones(1,3*N);
ub = [AreaX.*ones(1,N),AreaY.*ones(1,N),AreaZ.*ones(1,N)];
dim = 3*N;%维度为3N,N个坐标点

5.算法结果

在这里插入图片描述
在这里插入图片描述

从结果来看,覆盖率在优化过程中不断上升。表明JAYA算法对覆盖优化起到了优化的作用。

6.参考文献

[1] 史朝亚. 基于PSO算法无线传感器网络覆盖优化的研究[D]. 南京理工大学.

7.MATLAB代码

相关文章:

智能优化算法应用:基于JAYA算法3D无线传感器网络(WSN)覆盖优化 - 附代码

智能优化算法应用:基于JAYA算法3D无线传感器网络(WSN)覆盖优化 - 附代码 文章目录 智能优化算法应用:基于JAYA算法3D无线传感器网络(WSN)覆盖优化 - 附代码1.无线传感网络节点模型2.覆盖数学模型及分析3.JAYA算法4.实验参数设定5.算法结果6.参考文献7.MA…...

ripro后台登录后转圈和图标不显示的原因及解决方法

最近,好多小伙伴使用ripro主题的小伙伴们都发现,登录后台后,进入主题设置就转圈,等待老半天后好不容易显示页面了,却发现图标不显示了,都统一显示为方框。 这是因为后台的js、css这类静态资源托管用的是js…...

android 源码编译android 12

一、python安装 python2 sudo apt-get install python python3 sudo apt-get install python3 二、repo管理多个git repo因为Android源码由多个git组成,故安装repo利于管理git工程. repo安装步骤 a.第一步, 新建一个空白文件夹保存repo引导文件,并包含你的路径…...

CSS第二天导读

1,Emmet语法 Emmet语法的前身是Zen coding,它使用缩写,来提高html / css 的编写速度,Vscode内部已经集成该语法 1.1,快速生成HTML结构语法 1.想要快速生成多个相同标签,加上*就可以了,比如 d…...

scroll-behavior属性使用方法

定义和用法&#xff1a; scroll-behavior 属性规定当用户单击可滚动框中的链接时&#xff0c;是否平滑地&#xff08;具动画效果&#xff09;滚动位置&#xff0c;而不是直线跳转。 <style>element{/* 核心代码 */scroll-behavior: smooth;} </style> 属性值&am…...

Python Django 连接 PostgreSQL 操作实例

更多Python学习内容&#xff1a;ipengtao.com 大家好&#xff0c;我是彭涛&#xff0c;今天为大家分享 Python Django 连接 PostgreSQL 操作实例&#xff0c;全文3500字&#xff0c;阅读大约10分钟 在Web开发中&#xff0c;使用Django连接到PostgreSQL数据库是一种常见的选择。…...

5.实现简化版raft协议完成选举

1.设计 前面已经完成了netty的集成&#xff0c;接下来就是借助netty完成选举就行了。 针对选举&#xff0c;我们用到了VotRequestMessage、VotRespMessage、当节点下线时NodeOfflineMessage、NodeOnlineMessage、NodeOnlineRespMessage 1.1 节点详细的交互 1.2 对所有消息的…...

服装管理系统 简单实现

服装管理系统 项目使用jsp servletmysql实现&#xff1b; 登陆注册 首页 首页显示服装信息 服装管理 1添加服装 2修改服装 3分页查询服装 4导出服装信息 5 导入服装信息 代码结构截图 百度网盘 链接&#xff1a;https://pan.baidu.com/s/1zfLHGMnrYd-JtnhzS5elYQ 提取码…...

深度学习项目实战:垃圾分类系统

简介&#xff1a; 今天开启深度学习另一板块。就是计算机视觉方向&#xff0c;这里主要讨论图像分类任务–垃圾分类系统。其实这个项目早在19年的时候&#xff0c;我就写好了一个版本了。之前使用的是python搭建深度学习网络&#xff0c;然后前后端交互的采用的是java spring …...

C#浅拷贝和深拷贝数据

目录 一、浅拷贝 二、深拷贝 一、浅拷贝 就是把原来的数据&#xff0c;复制一份&#xff0c;但是2份数据是共享地址的&#xff0c;修改第一份数据或者修改第二份数据&#xff0c;都会一起改变&#xff0c;这可能不是我们程序中需要的场景。 下面我们演示一下&#xff0c;首…...

【JVM】4.运行时数据区(程序计数器、虚拟机栈)

文章目录 4.JVM的运行时数据区4.1 程序计数器4.2 Java虚拟机栈4.3 虚拟机栈内存溢出 4.JVM的运行时数据区 4.1 程序计数器 程序计数器&#xff08;PC&#xff09;会记录着下一行字节码指令的地址。执行完当前指令后&#xff0c;PC刷新&#xff0c;JVM的执行引擎根据程序计数器…...

算法:程序员的数学读书笔记

目录 ​0的故事 ​一、按位计数法 二、不使用按位计数法的罗马数字 三、十进制转二进制​​​​​​​ ​四、0所起到的作用​​​​​​​ 逻辑 一、为何逻辑如此重要 二、兼顾完整性和排他性 三、逻辑 四、德摩根定律 五、真值表 六、文氏图 七、卡诺图 八、逻…...

机器学习算法---时间序列

类别内容导航机器学习机器学习算法应用场景与评价指标机器学习算法—分类机器学习算法—回归机器学习算法—聚类机器学习算法—异常检测机器学习算法—时间序列数据可视化数据可视化—折线图数据可视化—箱线图数据可视化—柱状图数据可视化—饼图、环形图、雷达图统计学检验箱…...

RK3568/RV1126/RV1109/RV1106 ISP调试方案

最近一直在做瑞芯微rv1126的开发&#xff0c;由于项目性质&#xff0c;与camera打的交道比较多&#xff0c;包括图像的采集&#xff0c;ISP处理&#xff0c;图像处理&#xff0c;H.264/H.265编解码等各个方面吧。学到了不少&#xff0c;在学习的过程中&#xff0c;也得到了不少…...

【TB作品】51单片机,语音出租车计价器

西交大题目 1.语音出租车计价器 一、功能要求: 1.具有可模拟出租车车轮转速传感器的硬件设计,可计量出租车所走的公 里数。 2.显示和语音播报里程、价格和等待红灯或堵车的计时价格: 3.具有等待计时功能 4.具有实时年月日显示和切换功能。 5.操作简单、界面友好。 二、设计建议…...

jmeter简单压测kafka

前言 这也是一个笔记&#xff0c;就是计划用jmeter做性能测试&#xff0c;但是这里是只要将数据放到kafka的topic里&#xff0c;后面查看下游业务处理能力。 一、方案 因为只要实现数据放到kafka&#xff0c;参考了下博友的方案&#xff0c;可行。 二、方案验证 详细过程就不…...

【漏洞复现】红帆OA iorepsavexml.aspx文件上传漏洞

漏洞描述 广州红帆科技深耕医疗行业20余年,专注医院行政管控,与企业微信、阿里钉钉全方位结合,推出web移动一体化办公解决方案——iOffice20(医微云)。提供行政办公、专业科室应用、决策辅助等信息化工具,采取平台化管理模式,取代医疗机构过往多系统分散式管理,实现医…...

04_Web框架之Django一

Web框架之Django一 学习目标和内容 1、能够描述Django的作用 2、能够使用Django创建应用 3、能够使用GET和POST请求方式进行传参 4、能够使用Django的函数式方法定义视图 5、能够进行Django的配置文件修改 6、能够基本使用Django的路由定义 一、Django相关介绍 1、什么是Djan…...

单机架构到分布式架构的演变

目录 1.单机架构 2.应用数据分离架构 3.应用服务集群架构 4.读写分离 / 主从分离架构 5.引入缓存 —— 冷热分离架构 6.垂直分库 7.业务拆分 —— 微服务 8.容器化引入——容器编排架构 总结 1.单机架构 初期&#xff0c;我们需要利用我们精干的技术团队&#xff0c;快…...

1.新入手的32位单片机资源和资料总览

前言&#xff1a; 学了将近1年的linux驱动和uboot&#xff0c;感觉反馈不足&#xff0c;主要是一直在学各种框架&#xff0c;而且也遇到了门槛&#xff0c;比如驱动部分&#xff0c;还不能随心所欲地编程&#xff0c;原因是有些外设的原理还不够深刻、有些复杂的底层驱动的代码…...

突破不可导策略的训练难题:零阶优化与强化学习的深度嵌合

强化学习&#xff08;Reinforcement Learning, RL&#xff09;是工业领域智能控制的重要方法。它的基本原理是将最优控制问题建模为马尔可夫决策过程&#xff0c;然后使用强化学习的Actor-Critic机制&#xff08;中文译作“知行互动”机制&#xff09;&#xff0c;逐步迭代求解…...

【入坑系列】TiDB 强制索引在不同库下不生效问题

文章目录 背景SQL 优化情况线上SQL运行情况分析怀疑1:执行计划绑定问题?尝试:SHOW WARNINGS 查看警告探索 TiDB 的 USE_INDEX 写法Hint 不生效问题排查解决参考背景 项目中使用 TiDB 数据库,并对 SQL 进行优化了,添加了强制索引。 UAT 环境已经生效,但 PROD 环境强制索…...

Auto-Coder使用GPT-4o完成:在用TabPFN这个模型构建一个预测未来3天涨跌的分类任务

通过akshare库&#xff0c;获取股票数据&#xff0c;并生成TabPFN这个模型 可以识别、处理的格式&#xff0c;写一个完整的预处理示例&#xff0c;并构建一个预测未来 3 天股价涨跌的分类任务 用TabPFN这个模型构建一个预测未来 3 天股价涨跌的分类任务&#xff0c;进行预测并输…...

HashMap中的put方法执行流程(流程图)

1 put操作整体流程 HashMap 的 put 操作是其最核心的功能之一。在 JDK 1.8 及以后版本中&#xff0c;其主要逻辑封装在 putVal 这个内部方法中。整个过程大致如下&#xff1a; 初始判断与哈希计算&#xff1a; 首先&#xff0c;putVal 方法会检查当前的 table&#xff08;也就…...

20个超级好用的 CSS 动画库

分享 20 个最佳 CSS 动画库。 它们中的大多数将生成纯 CSS 代码&#xff0c;而不需要任何外部库。 1.Animate.css 一个开箱即用型的跨浏览器动画库&#xff0c;可供你在项目中使用。 2.Magic Animations CSS3 一组简单的动画&#xff0c;可以包含在你的网页或应用项目中。 3.An…...

打手机检测算法AI智能分析网关V4守护公共/工业/医疗等多场景安全应用

一、方案背景​ 在现代生产与生活场景中&#xff0c;如工厂高危作业区、医院手术室、公共场景等&#xff0c;人员违规打手机的行为潜藏着巨大风险。传统依靠人工巡查的监管方式&#xff0c;存在效率低、覆盖面不足、判断主观性强等问题&#xff0c;难以满足对人员打手机行为精…...

论文阅读笔记——Muffin: Testing Deep Learning Libraries via Neural Architecture Fuzzing

Muffin 论文 现有方法 CRADLE 和 LEMON&#xff0c;依赖模型推理阶段输出进行差分测试&#xff0c;但在训练阶段是不可行的&#xff0c;因为训练阶段直到最后才有固定输出&#xff0c;中间过程是不断变化的。API 库覆盖低&#xff0c;因为各个 API 都是在各种具体场景下使用。…...

Windows电脑能装鸿蒙吗_Windows电脑体验鸿蒙电脑操作系统教程

鸿蒙电脑版操作系统来了&#xff0c;很多小伙伴想体验鸿蒙电脑版操作系统&#xff0c;可惜&#xff0c;鸿蒙系统并不支持你正在使用的传统的电脑来安装。不过可以通过可以使用华为官方提供的虚拟机&#xff0c;来体验大家心心念念的鸿蒙系统啦&#xff01;注意&#xff1a;虚拟…...

深入理解 C++ 左值右值、std::move 与函数重载中的参数传递

在 C 编程中&#xff0c;左值和右值的概念以及std::move的使用&#xff0c;常常让开发者感到困惑。特别是在函数重载场景下&#xff0c;如何合理利用这些特性来优化代码性能、确保语义正确&#xff0c;更是一个值得深入探讨的话题。 在开始之前&#xff0c;先提出几个问题&…...

轻量安全的密码管理工具Vaultwarden

一、Vaultwarden概述 Vaultwarden主要作用是提供一个自托管的密码管理器服务。它是Bitwarden密码管理器的第三方轻量版&#xff0c;由国外开发者在Bitwarden的基础上&#xff0c;采用Rust语言重写而成。 &#xff08;一&#xff09;Vaultwarden镜像的作用及特点 轻量级与高性…...