当前位置: 首页 > news >正文

数据仓库与数据挖掘小结

更加详细的只找得到pdf版本 

填空10分
判断并改错10分
计算8分
综合20分

客观题

填空10分
判断并改错10分--错的要改

mooc中的--尤其考试题

 

名词解释12分

4个,每个3分

经常碰到的专业术语

简答题40分

5个,每道8分

综合

roc曲线

类似于和计算相关的题目

C1

什么是数据挖掘?概念是什么?

哪些操作属于数据挖掘操作,哪些操作不属于
数据:海量、多源异构

操作:从大量的数据中提取出有趣的(重要、隐含、以前未知、潜在有用)模式或知识。

数据分析与数据挖掘有区别
数据挖掘AKA知识发现KDD

数据挖掘的流程

在数据管理的视角下,数据挖掘的流程是什么?有哪些环节?一定要注意是一个迭代反馈的过程
 

数据集成

不同数据源中描述同一条数据对象《变成一个比较统一的数据信息

数据清理

错误、异常、冗余、缺失

进入数据仓库

按主题存储数据

选择、变换

把数据仓库中的数据变成与数据挖掘任务相关的数据集
选择:选择相关数据、属性特征
变换:格式可能不满足算法要求、数据量纲;特征转换--相乘相除etc…

得到和任务相关的数据集,可供我们使用算法

数据挖掘

设计或选择合适的模型,用于任务相关的数据上,得到模式

知识评估

若不满足,考虑到之前所有步骤--哪个或哪几个步骤不合适


反复试验的过程

数据挖掘的任务

分类回归

利用历史记录预测未来的值--预测问题

聚类

相关性分析与关联分析-关联规则挖掘

异常检测

预测性任务

描述性任务

关联规则挖掘-物品之间共线关系

C2

数据集的主要特征

维度、分辨率、稀疏性

识别数据属性值中的异常的方法

画图【箱线图】、统计的3σ原则

标称【标称属性中的二分属性->对称二分与不对称二分】、序数、数值,如何计算这些数据类型的相似度?如果数据的属性是混合类型的数据类型的相似度怎么计算?【核心

数据对象的相似性度量问题【两个行的相似性】【属性之间的相似性是两个列】

相似性和相异性此涨彼消

标称

p为属性个数,m是两个对象属性取值相等的个数,p-m两个对象取值不相等的个数

二分
需要四个指标
 

非对称:
取0的可能性更高:尽管差异性很大但是因为取0概率高导致差异性不准
 

序数

取值转换为数值类型--把级别从低到高排序;
取值按公式转换
 

数值

用距离衡量
 

常用距离

闵氏距离

曼哈顿距离-出租车距离-沿着街道走走折线--高维
 

上确界距离

文档

余弦相似度
 

混合类型

f:每个属性
dij(f):在f属性上的相异度
前面为权重

属性之间的相关性

单相关和复相关

正相关和负相关

线性相关和非线性相关

不相关、完全相关、不完全相关

画散点图
相关系数

线性:

协方差

皮尔森相关系数

等级

最大信息系数MIC:用于度量高维数据中属性变量之间强相关性
 

属性和属性间的计算属于相关性分析--方法

C3

数据预处理主要包括哪些步骤?

数据清理、数据集成、数据转换、数据约减
 

简述数据清理的主要任务、常用方法、流程

处理缺失数据、平滑噪声、识别或移除异常(属性值的异常)、解决数据不一致的问题…
 

常用方法
 

缺失值

删除;
插补
 

异常值

噪音

不一致

实体识别技术

流程
 

流程:

右侧是数据清理的过程,首先import data导入数据,集中相关数据,处理缺失值,标准化【max-min这种,目标是统一特征维度的量纲】、规范化【变换后吻合一个分布zscore】,重复性检测、修正错误与丰富,导出

常用离散化方法有哪些?【看下游任务】

无监督

分箱

直方图

聚类(k-means)

有监督--类标签指导下

基于熵的方法

不断离散化

如何识别冗余属性?

通过相关性分析发现冗余属性
 

数值属性:相关系数、协方差
标称类型:卡方检验
 

常用的约减方法--前三个对数据量压缩,PCA是无监督的降维

回归

聚类

抽样

PCA

数据量的压缩

有参

回归

只保留参数wb,想生成数据集的时候直接在x上随机采样生成y值

无参

聚类

对每个簇抽样

抽样

有放回、无放回、分层

维度压缩

无监督pca

把原始的属性描述的特征空间映射为正交矩阵空间,尽可能多的保留原始数据信息
消除冗余--维度彼此独立
pca通过做正交矩阵分解,得到主成分,选前k个重要特征作为新的空间中的特征,把所有数据对象由前k个特征的线性组合表示

属性子集选择

Method1:删除冗余属性、删除不重要的…得到子集
Method2:添加最重要的、次重要的…得到子集
 

Vs

属性选择得到的特征有具体含义,PCA没有【黑箱】-可能可以得到非常好的特征提取但是可解释性差


 

olap

数仓的基本架构

简述数仓的数据模型及各模型特点

数据仓库与数据库的区别

关联规则挖掘

方法与评估指标
 

 两阶段

频繁项集的产生--关联规则的产生

频繁项集的实现

用了性质缩小频繁项集的空间

关联规则挖掘的内容

评估指标--常用支持度和置信度,并不一定是一个有意义的关联规则,

提升度

聚类

聚类和分类的区别

kmeans和DBSCAN的原理和流程和优缺点特点,对kmeans的缺点有哪些办法可以解决

k值需要确定

设置不同k值求sse,考虑拐点附近的k值

初始聚类中心的选择

第一个随机选,下一个选离当前选择的最远的

对噪声点和异常敏感【因为均值敏感】

使用k-medoids用真实数据对象作为中心-复杂度高-由簇中的数据对象替代;用k中位数

球形簇【基于距离】

空簇

选sse贡献最大的点作为簇中心,从簇中选一个对sse贡献最大的点,
 

尺寸:

密度:
 



非凸:
 

解决:
 

k取较大值分为多个小簇再合并

纵轴:第k个最近邻距离的变化范围
横轴:数据对象按最近邻距离编码
大部分数据对象的第k个最近邻的变化变化幅度不大,拐点飙升-异常点,当k取大,距离大
由此判断k

聚类的评估指标--有监督【和分类一样】和无监督【规范化的互信息与轮廓系数】

标准化的互信息-Y是聚类标签,C是真实标签-I(Y,C)互信息=H(C )-H(Y|C)yc依赖性越高越好

分类

roc怎么画

tpr是召回率
 

评估指标--精度召回率fscore

决策树、贝叶斯、集成

贝叶斯:易于实现,结果比较好,鲁棒的
有可能有依赖


集成
 

对于不稳定的分类器才有提升效果

评估框架--bootstrap cosostation??交叉验证的bootstrap

二分类问题

正事例
 

异常

异常的类型

异常的方法

基于统计、距离、密度、

相关文章:

数据仓库与数据挖掘小结

更加详细的只找得到pdf版本 填空10分 判断并改错10分 计算8分 综合20分 客观题 填空10分 判断并改错10分--错的要改 mooc中的--尤其考试题 名词解释12分 4个,每个3分 经常碰到的专业术语 简答题40分 5个,每道8分 综合 画roc曲线 …...

ensp创建配置环境,实现全网互访

文章目录 创建配置环境,实现全网互访配置步骤接入层交换机(sw4、sw5)划分vlan汇聚层交换机(sw2、sw3)配置ip地址作为vlan网关、与sw1 ip地址直连核心层交换机(sw1)配置ip地址与汇聚层交换机&…...

智能优化算法应用:基于JAYA算法3D无线传感器网络(WSN)覆盖优化 - 附代码

智能优化算法应用:基于JAYA算法3D无线传感器网络(WSN)覆盖优化 - 附代码 文章目录 智能优化算法应用:基于JAYA算法3D无线传感器网络(WSN)覆盖优化 - 附代码1.无线传感网络节点模型2.覆盖数学模型及分析3.JAYA算法4.实验参数设定5.算法结果6.参考文献7.MA…...

ripro后台登录后转圈和图标不显示的原因及解决方法

最近,好多小伙伴使用ripro主题的小伙伴们都发现,登录后台后,进入主题设置就转圈,等待老半天后好不容易显示页面了,却发现图标不显示了,都统一显示为方框。 这是因为后台的js、css这类静态资源托管用的是js…...

android 源码编译android 12

一、python安装 python2 sudo apt-get install python python3 sudo apt-get install python3 二、repo管理多个git repo因为Android源码由多个git组成,故安装repo利于管理git工程. repo安装步骤 a.第一步, 新建一个空白文件夹保存repo引导文件,并包含你的路径…...

CSS第二天导读

1,Emmet语法 Emmet语法的前身是Zen coding,它使用缩写,来提高html / css 的编写速度,Vscode内部已经集成该语法 1.1,快速生成HTML结构语法 1.想要快速生成多个相同标签,加上*就可以了,比如 d…...

scroll-behavior属性使用方法

定义和用法&#xff1a; scroll-behavior 属性规定当用户单击可滚动框中的链接时&#xff0c;是否平滑地&#xff08;具动画效果&#xff09;滚动位置&#xff0c;而不是直线跳转。 <style>element{/* 核心代码 */scroll-behavior: smooth;} </style> 属性值&am…...

Python Django 连接 PostgreSQL 操作实例

更多Python学习内容&#xff1a;ipengtao.com 大家好&#xff0c;我是彭涛&#xff0c;今天为大家分享 Python Django 连接 PostgreSQL 操作实例&#xff0c;全文3500字&#xff0c;阅读大约10分钟 在Web开发中&#xff0c;使用Django连接到PostgreSQL数据库是一种常见的选择。…...

5.实现简化版raft协议完成选举

1.设计 前面已经完成了netty的集成&#xff0c;接下来就是借助netty完成选举就行了。 针对选举&#xff0c;我们用到了VotRequestMessage、VotRespMessage、当节点下线时NodeOfflineMessage、NodeOnlineMessage、NodeOnlineRespMessage 1.1 节点详细的交互 1.2 对所有消息的…...

服装管理系统 简单实现

服装管理系统 项目使用jsp servletmysql实现&#xff1b; 登陆注册 首页 首页显示服装信息 服装管理 1添加服装 2修改服装 3分页查询服装 4导出服装信息 5 导入服装信息 代码结构截图 百度网盘 链接&#xff1a;https://pan.baidu.com/s/1zfLHGMnrYd-JtnhzS5elYQ 提取码…...

深度学习项目实战:垃圾分类系统

简介&#xff1a; 今天开启深度学习另一板块。就是计算机视觉方向&#xff0c;这里主要讨论图像分类任务–垃圾分类系统。其实这个项目早在19年的时候&#xff0c;我就写好了一个版本了。之前使用的是python搭建深度学习网络&#xff0c;然后前后端交互的采用的是java spring …...

C#浅拷贝和深拷贝数据

目录 一、浅拷贝 二、深拷贝 一、浅拷贝 就是把原来的数据&#xff0c;复制一份&#xff0c;但是2份数据是共享地址的&#xff0c;修改第一份数据或者修改第二份数据&#xff0c;都会一起改变&#xff0c;这可能不是我们程序中需要的场景。 下面我们演示一下&#xff0c;首…...

【JVM】4.运行时数据区(程序计数器、虚拟机栈)

文章目录 4.JVM的运行时数据区4.1 程序计数器4.2 Java虚拟机栈4.3 虚拟机栈内存溢出 4.JVM的运行时数据区 4.1 程序计数器 程序计数器&#xff08;PC&#xff09;会记录着下一行字节码指令的地址。执行完当前指令后&#xff0c;PC刷新&#xff0c;JVM的执行引擎根据程序计数器…...

算法:程序员的数学读书笔记

目录 ​0的故事 ​一、按位计数法 二、不使用按位计数法的罗马数字 三、十进制转二进制​​​​​​​ ​四、0所起到的作用​​​​​​​ 逻辑 一、为何逻辑如此重要 二、兼顾完整性和排他性 三、逻辑 四、德摩根定律 五、真值表 六、文氏图 七、卡诺图 八、逻…...

机器学习算法---时间序列

类别内容导航机器学习机器学习算法应用场景与评价指标机器学习算法—分类机器学习算法—回归机器学习算法—聚类机器学习算法—异常检测机器学习算法—时间序列数据可视化数据可视化—折线图数据可视化—箱线图数据可视化—柱状图数据可视化—饼图、环形图、雷达图统计学检验箱…...

RK3568/RV1126/RV1109/RV1106 ISP调试方案

最近一直在做瑞芯微rv1126的开发&#xff0c;由于项目性质&#xff0c;与camera打的交道比较多&#xff0c;包括图像的采集&#xff0c;ISP处理&#xff0c;图像处理&#xff0c;H.264/H.265编解码等各个方面吧。学到了不少&#xff0c;在学习的过程中&#xff0c;也得到了不少…...

【TB作品】51单片机,语音出租车计价器

西交大题目 1.语音出租车计价器 一、功能要求: 1.具有可模拟出租车车轮转速传感器的硬件设计,可计量出租车所走的公 里数。 2.显示和语音播报里程、价格和等待红灯或堵车的计时价格: 3.具有等待计时功能 4.具有实时年月日显示和切换功能。 5.操作简单、界面友好。 二、设计建议…...

jmeter简单压测kafka

前言 这也是一个笔记&#xff0c;就是计划用jmeter做性能测试&#xff0c;但是这里是只要将数据放到kafka的topic里&#xff0c;后面查看下游业务处理能力。 一、方案 因为只要实现数据放到kafka&#xff0c;参考了下博友的方案&#xff0c;可行。 二、方案验证 详细过程就不…...

【漏洞复现】红帆OA iorepsavexml.aspx文件上传漏洞

漏洞描述 广州红帆科技深耕医疗行业20余年,专注医院行政管控,与企业微信、阿里钉钉全方位结合,推出web移动一体化办公解决方案——iOffice20(医微云)。提供行政办公、专业科室应用、决策辅助等信息化工具,采取平台化管理模式,取代医疗机构过往多系统分散式管理,实现医…...

04_Web框架之Django一

Web框架之Django一 学习目标和内容 1、能够描述Django的作用 2、能够使用Django创建应用 3、能够使用GET和POST请求方式进行传参 4、能够使用Django的函数式方法定义视图 5、能够进行Django的配置文件修改 6、能够基本使用Django的路由定义 一、Django相关介绍 1、什么是Djan…...

工业安全零事故的智能守护者:一体化AI智能安防平台

前言&#xff1a; 通过AI视觉技术&#xff0c;为船厂提供全面的安全监控解决方案&#xff0c;涵盖交通违规检测、起重机轨道安全、非法入侵检测、盗窃防范、安全规范执行监控等多个方面&#xff0c;能够实现对应负责人反馈机制&#xff0c;并最终实现数据的统计报表。提升船厂…...

PHP和Node.js哪个更爽?

先说结论&#xff0c;rust完胜。 php&#xff1a;laravel&#xff0c;swoole&#xff0c;webman&#xff0c;最开始在苏宁的时候写了几年php&#xff0c;当时觉得php真的是世界上最好的语言&#xff0c;因为当初活在舒适圈里&#xff0c;不愿意跳出来&#xff0c;就好比当初活在…...

可靠性+灵活性:电力载波技术在楼宇自控中的核心价值

可靠性灵活性&#xff1a;电力载波技术在楼宇自控中的核心价值 在智能楼宇的自动化控制中&#xff0c;电力载波技术&#xff08;PLC&#xff09;凭借其独特的优势&#xff0c;正成为构建高效、稳定、灵活系统的核心解决方案。它利用现有电力线路传输数据&#xff0c;无需额外布…...

c++ 面试题(1)-----深度优先搜索(DFS)实现

操作系统&#xff1a;ubuntu22.04 IDE:Visual Studio Code 编程语言&#xff1a;C11 题目描述 地上有一个 m 行 n 列的方格&#xff0c;从坐标 [0,0] 起始。一个机器人可以从某一格移动到上下左右四个格子&#xff0c;但不能进入行坐标和列坐标的数位之和大于 k 的格子。 例…...

Keil 中设置 STM32 Flash 和 RAM 地址详解

文章目录 Keil 中设置 STM32 Flash 和 RAM 地址详解一、Flash 和 RAM 配置界面(Target 选项卡)1. IROM1(用于配置 Flash)2. IRAM1(用于配置 RAM)二、链接器设置界面(Linker 选项卡)1. 勾选“Use Memory Layout from Target Dialog”2. 查看链接器参数(如果没有勾选上面…...

使用 Streamlit 构建支持主流大模型与 Ollama 的轻量级统一平台

🎯 使用 Streamlit 构建支持主流大模型与 Ollama 的轻量级统一平台 📌 项目背景 随着大语言模型(LLM)的广泛应用,开发者常面临多个挑战: 各大模型(OpenAI、Claude、Gemini、Ollama)接口风格不统一;缺乏一个统一平台进行模型调用与测试;本地模型 Ollama 的集成与前…...

初探Service服务发现机制

1.Service简介 Service是将运行在一组Pod上的应用程序发布为网络服务的抽象方法。 主要功能&#xff1a;服务发现和负载均衡。 Service类型的包括ClusterIP类型、NodePort类型、LoadBalancer类型、ExternalName类型 2.Endpoints简介 Endpoints是一种Kubernetes资源&#xf…...

LLMs 系列实操科普(1)

写在前面&#xff1a; 本期内容我们继续 Andrej Karpathy 的《How I use LLMs》讲座内容&#xff0c;原视频时长 ~130 分钟&#xff0c;以实操演示主流的一些 LLMs 的使用&#xff0c;由于涉及到实操&#xff0c;实际上并不适合以文字整理&#xff0c;但还是决定尽量整理一份笔…...

省略号和可变参数模板

本文主要介绍如何展开可变参数的参数包 1.C语言的va_list展开可变参数 #include <iostream> #include <cstdarg>void printNumbers(int count, ...) {// 声明va_list类型的变量va_list args;// 使用va_start将可变参数写入变量argsva_start(args, count);for (in…...

关于uniapp展示PDF的解决方案

在 UniApp 的 H5 环境中使用 pdf-vue3 组件可以实现完整的 PDF 预览功能。以下是详细实现步骤和注意事项&#xff1a; 一、安装依赖 安装 pdf-vue3 和 PDF.js 核心库&#xff1a; npm install pdf-vue3 pdfjs-dist二、基本使用示例 <template><view class"con…...