当前位置: 首页 > news >正文

智能优化算法应用:基于乌燕鸥算法3D无线传感器网络(WSN)覆盖优化 - 附代码

智能优化算法应用:基于乌燕鸥算法3D无线传感器网络(WSN)覆盖优化 - 附代码

文章目录

  • 智能优化算法应用:基于乌燕鸥算法3D无线传感器网络(WSN)覆盖优化 - 附代码
    • 1.无线传感网络节点模型
    • 2.覆盖数学模型及分析
    • 3.乌燕鸥算法
    • 4.实验参数设定
    • 5.算法结果
    • 6.参考文献
    • 7.MATLAB代码

摘要:本文主要介绍如何用乌燕鸥算法进行3D无线传感器网(WSN)覆盖优化。

1.无线传感网络节点模型

本文主要基于0/1模型,进行寻优。在二维平面上传感器节点的感知范围是一个以节点为圆心,半径为 R n R_n Rn的圆形区域,该圆形区域通常被称为该节点的“感知圆盘”, R n R_n Rn称为传感器节点的感知半径,感知半径与节点内置传感器件的物理特性有关,假设节点 n n n的位置坐标为 ( x n , y n , z n ) (x_n,y_n,z_n) (xn,yn,zn)在0-1感知模型中,对于平面上任意一点 p ( x p , y p , z p ) p(x_p,y_p,z_p) p(xp,yp,zp),则节点 n n n监测到区域内点 p p p的事件发生概率为:
P r ( n , p ) = { 1 , d ( n , p ) ≤ R n 0 , e s l e (1) P_r(n,p)=\begin{cases}1, \,d(n,p)\leq R_n\\ 0,\, esle \end{cases}\tag{1} Pr(n,p)={1,d(n,p)Rn0,esle(1)
其中 d ( n , p ) = ( x n − x p ) 2 + ( y n − y p ) 2 + ( z n − z p ) 2 d(n,p)=\sqrt{(x_n-x_p)^2+(y_n-y_p)^2 + (z_n-z_p)^2} d(n,p)=(xnxp)2+(ynyp)2+(znzp)2 为点和之间的欧式距离。

2.覆盖数学模型及分析

现假定目标监测区域为二维平面,在区域 A r e a Area Area上投放同型结构传感器节点的数目为N,每个节点的位置坐标值假设已被初始化赋值,且节点的感知半径r。传感器节点集则表示为:
N o d e { x 1 , . . . , x N } (2) Node\{x_1,...,x_N\} \tag{2} Node{x1,...,xN}(2)
其中 n o d e i = { x i , y i , z i , r } node_i=\{x_i,y_i,z_i,r\} nodei={xi,yi,zi,r},表示以节点 ( x i , y i , z i ) (x_i,y_i,z_i) (xi,yi,zi)为圆心,r为监测半径的球,假定监测区域 A r e a Area Area被数字化离散为 m ∗ n ∗ l m*n*l mnl个空间点,空间点的坐标为 ( x , y , z ) (x,y,z) (x,y,z),目标点与传感器节点间的距离为:
d ( n o d e i , p ) = ( x i − x ) 2 + ( y i − y ) 2 + ( z i − z ) 2 (3) d(node_i,p)=\sqrt{(x_i-x)^2+(y_i-y)^2 + (z_i-z)^2}\tag{3} d(nodei,p)=(xix)2+(yiy)2+(ziz)2 (3)
目标区域内点被传感器节点所覆盖的事件定义为 c i c_i ci。则该事件发生的概率 P c i P{c_i} Pci即为点 ( x , y , z ) (x,y,z) (x,y,z)被传感器节点 n o d e i node_i nodei所覆盖的概率:
P c o v ( x , y , z , n o d e i ) = { 1 , i f d ( n o d e i , p ) ≤ r 0 , e s l e (4) P_{cov}(x,y,z,node_i)=\begin{cases}1, if\,d(node_i,p)\leq r\\ 0,\, esle \end{cases}\tag{4} Pcov(x,y,z,nodei)={1,ifd(nodei,p)r0,esle(4)
我们将所有的传感器节点在目标监测环境中的区域覆盖率 C o v e r R a t i o CoverRatio CoverRatio定义为传感器节点集的覆盖面积与监测区域的面积之比,如公式所示:
C o v e r R a t i o = ∑ P c o v m ∗ n ∗ l (5) CoverRatio = \frac{\sum P_{cov}}{m*n*l}\tag{5} CoverRatio=mnlPcov(5)
那我们的最终目标就是找到一组节点使得覆盖率最大。

3.乌燕鸥算法

乌燕鸥算法原理请参考:https://blog.csdn.net/u011835903/article/details/111936344
乌燕鸥算法是寻找最小值。于是适应度函数定义为未覆盖率最小,即覆盖率最大。如下:
f u n = a r g m i n ( 1 − C o v e r R a t i o ) = a r g m i n ( 1 − ∑ P c o v m ∗ n ∗ l ) (6) fun = argmin(1 - CoverRatio) = argmin(1-\frac{\sum P_{cov}}{m*n*l}) \tag{6} fun=argmin(1CoverRatio)=argmin(1mnlPcov)(6)

4.实验参数设定

无线传感器覆盖参数设定如下:

%% 设定WNS覆盖参数,
%% 默认输入参数都是整数,如果想定义小数,请自行乘以系数变为整数再做转换。
%% 比如范围1*1,R=0.03可以转换为100*100,R=3;
%区域范围为AreaX*AreaY*AreaZ
AreaX = 100;
AreaY = 100;
AreaZ = 100;
N = 20 ;%覆盖节点数
R = 15;%通信半径

乌燕鸥算法参数如下:

%% 设定乌燕鸥优化参数
pop=30; % 种群数量
Max_iteration=30; %设定最大迭代次数
lb = ones(1,3*N);
ub = [AreaX.*ones(1,N),AreaY.*ones(1,N),AreaZ.*ones(1,N)];
dim = 3*N;%维度为3N,N个坐标点

5.算法结果

在这里插入图片描述

从结果来看,覆盖率在优化过程中不断上升。表明乌燕鸥算法对覆盖优化起到了优化的作用。

6.参考文献

[1] 史朝亚. 基于PSO算法无线传感器网络覆盖优化的研究[D]. 南京理工大学.

7.MATLAB代码

相关文章:

智能优化算法应用:基于乌燕鸥算法3D无线传感器网络(WSN)覆盖优化 - 附代码

智能优化算法应用:基于乌燕鸥算法3D无线传感器网络(WSN)覆盖优化 - 附代码 文章目录 智能优化算法应用:基于乌燕鸥算法3D无线传感器网络(WSN)覆盖优化 - 附代码1.无线传感网络节点模型2.覆盖数学模型及分析3.乌燕鸥算法4.实验参数设定5.算法结果6.参考文…...

超聚变服务器(原华为服务器)网站模拟器

一、超聚变服务器(原华为服务器)网站模拟器: 原来了解服务器可以从他的网站上进行了解,模拟器做的很好了。 https://support.xfusion.com/server-simulators/ 有很多的模拟器,今天主要看下BMC的设置 有很多的在线工具…...

Linux常见压缩指令小结

为什么需要压缩技术 我们都知道文件是以byte作为单位的,如果我们的文件仅仅在低位占一个1 0000 0001这种情况我们完全可以压缩一下,将高位的0全部抹掉即可。 如上所说是一种压缩技术,还有一种就是将1111(此处省略96个)一共100个1&#xff0…...

OpenSSL的源码在哪里下载?

官方网站去下载,网址: https://www.openssl.org/source/ 比较老的版本的下载页面地址: https://www.openssl.org/source/old/ 由于某面板的OpenSSL模块的安装配置语句如下: --with-openssl/root/rpmbuild/BUILD/openssl-1.0.2u所…...

使用create-react-app脚手架创建react项目

文章目录 1、安装create-react-app脚手架2、创建 React 项目,项目名为 react-demo3、项目创建成功4、使用vscode打开项目并运行5、项目运行成功node_modules:存放项目所依赖的一些第三方包文件public:静态资源文件夹src:源码文件夹其它文件 1…...

【网络安全】网络防护之旅 - 点燃网络安全战场的数字签名烟火

​ 🌈个人主页:Sarapines Programmer🔥 系列专栏:《网络安全之道 | 数字征程》⏰墨香寄清辞:千里传信如电光,密码奥妙似仙方。 挑战黑暗剑拔弩张,网络战场誓守长。 ​ 目录 😈1. 初识…...

JVM基础扫盲

什么是JVM JVM是Java设计者用于屏蔽多平台差异,基于操作系统之上的一个"小型虚拟机",正是因为JVM的存在,使得Java应用程序运行时不需要关注底层操作系统的差异。使得Java程序编译只需编译一次,在任何操作系统都可以以相…...

SpringBoot基于gRPC进行RPC调用

SpringBoot基于gRPC进行RPC调用 一、gRPC1.1 什么是gRPC?1.2 如何编写proto1.3 数据类型及对应关系1.4 枚举1.5 数组1.6 map类型1.7 嵌套对象 二、SpringBoot gRPC2.1 工程目录2.2 jrpc-api2.2.1 引入gRPC依赖2.2.2 编写 .proto 文件2.2.3 使用插件机制生产proto相关…...

浏览器的事件循环机制(Event loop)

事件循环 浏览器的进程模型 何为进程? 程序运行需要有它自己专属的内存空间,可以把这块内存空间简单的理解为进程 每个应用至少有一个进程,进程之间相互独立,即使要通信,也需要双方同意。 何为线程? …...

THEMIS---Beta Sprint Summary Essay Blog

Which course does this assignment belong to2301-MUSE社区-CSDN社区云What are the requirements for this assignmentbeta SprintThe goal of this assignmentTo summarize the beta task progress and the teams sprintsTeam NameThemisTop-of-the-line collection of essa…...

Vue中实现分布式动态路由的基本实现步骤介绍

设想一下,我们在做一个体量非常大的项目,这个项目有很多的模块和相当多的页面。当我们想修改一个路由的时候,我们打开了router文件夹下的index.js文件时,一串长到鼠标滚轮需要滚大半天才滚到底的路由简直让人头皮发麻。 在开始之前…...

【Leetcode】计算器

思路 用栈来完成; 考虑到运算关系,先乘除后加减;此外,一般计算式首个数字式正数;判断字符是否为数字,str.isdigit()字符转数字:ord(str) - ord(‘0’)遇到加减符,压栈数字&#xf…...

巧妙的使用WPF中的资源

其实,在wpf中,最核心的就是xaml,因为只有xaml,才能体现出用的是wpf,而不是普通的cs文件,cs文件在winform中等等程序都可以使用的,唯独xaml才是wpf中最重要的,最精华的东西&#xff0…...

多维时序 | MATLAB实现RIME-CNN-BiLSTM-Multihead-Attention多头注意力机制多变量时间序列预测

多维时序 | MATLAB实现RIME-CNN-BiLSTM-Multihead-Attention多头注意力机制多变量时间序列预测 目录 多维时序 | MATLAB实现RIME-CNN-BiLSTM-Multihead-Attention多头注意力机制多变量时间序列预测预测效果基本介绍模型描述程序设计参考资料 预测效果 基本介绍 MATLAB实现RIME-…...

【AIGC重塑教育】AI大模型驱动的教育变革与实践

文章目录 🍔现状🛸解决方法✨为什么要使用ai🎆彩蛋 🍔现状 AI正迅猛地改变着我们的生活。根据高盛发布的一份报告,AI有可能取代3亿个全职工作岗位,影响全球18%的工作岗位。在欧美,或许四分之一…...

【力扣100】2.两数相加

添加链接描述 # Definition for singly-linked list. # class ListNode: # def __init__(self, val0, nextNone): # self.val val # self.next next class Solution:def addTwoNumbers(self, l1: Optional[ListNode], l2: Optional[ListNode]) -> Op…...

算法leetcode|93. 复原 IP 地址(多语言实现)

文章目录 93. 复原 IP 地址:样例 1:样例 2:样例 3:提示: 分析:题解:rust:go:c:python:java: 93. 复原 IP 地址: 有效 IP …...

TOGAF—架构(Architecture)项目管理

一、简介 1.1概述 架构(Architecture)项目在本质上通常是复杂的。他们需要适当的项目管理来保持正轨并兑现承诺。本指南适用于负责规划和管理架构(Architecture)项目的人员。我们解释了如何用事实上的方法和标准(如PRINCE2或PMBOK)来补充TOGAF架构开发方法(ADM),以加…...

MVVM前端设计模式的发展与应用

在MVC模式中,随着代码量越来越大,主要用来处理各种逻辑和数据转化的Controller首当其冲,变得非常庞大,MVC的简写变成了Massive-View-Controller(意为沉重的Controller) 我曾经接手老项目,sprin…...

redis:二、缓存击穿的定义、解决方案(互斥锁、逻辑过期)的优缺点和适用场景、面试回答模板和缓存雪崩

缓存击穿的定义 缓存击穿是一种现象,具体就是某一个数据过期时,恰好有大量的并发请求过来,这些并发的请求可能会瞬间把DB压垮。典型场景就是双十一等抢购活动中,首页广告页面的数据过期,此时刚好大量用户进行请求&…...

生成xcframework

打包 XCFramework 的方法 XCFramework 是苹果推出的一种多平台二进制分发格式,可以包含多个架构和平台的代码。打包 XCFramework 通常用于分发库或框架。 使用 Xcode 命令行工具打包 通过 xcodebuild 命令可以打包 XCFramework。确保项目已经配置好需要支持的平台…...

golang循环变量捕获问题​​

在 Go 语言中,当在循环中启动协程(goroutine)时,如果在协程闭包中直接引用循环变量,可能会遇到一个常见的陷阱 - ​​循环变量捕获问题​​。让我详细解释一下: 问题背景 看这个代码片段: fo…...

树莓派超全系列教程文档--(62)使用rpicam-app通过网络流式传输视频

使用rpicam-app通过网络流式传输视频 使用 rpicam-app 通过网络流式传输视频UDPTCPRTSPlibavGStreamerRTPlibcamerasrc GStreamer 元素 文章来源: http://raspberry.dns8844.cn/documentation 原文网址 使用 rpicam-app 通过网络流式传输视频 本节介绍来自 rpica…...

VB.net复制Ntag213卡写入UID

本示例使用的发卡器:https://item.taobao.com/item.htm?ftt&id615391857885 一、读取旧Ntag卡的UID和数据 Private Sub Button15_Click(sender As Object, e As EventArgs) Handles Button15.Click轻松读卡技术支持:网站:Dim i, j As IntegerDim cardidhex, …...

在HarmonyOS ArkTS ArkUI-X 5.0及以上版本中,手势开发全攻略:

在 HarmonyOS 应用开发中,手势交互是连接用户与设备的核心纽带。ArkTS 框架提供了丰富的手势处理能力,既支持点击、长按、拖拽等基础单一手势的精细控制,也能通过多种绑定策略解决父子组件的手势竞争问题。本文将结合官方开发文档&#xff0c…...

(二)原型模式

原型的功能是将一个已经存在的对象作为源目标,其余对象都是通过这个源目标创建。发挥复制的作用就是原型模式的核心思想。 一、源型模式的定义 原型模式是指第二次创建对象可以通过复制已经存在的原型对象来实现,忽略对象创建过程中的其它细节。 📌 核心特点: 避免重复初…...

Linux-07 ubuntu 的 chrome 启动不了

文章目录 问题原因解决步骤一、卸载旧版chrome二、重新安装chorme三、启动不了,报错如下四、启动不了,解决如下 总结 问题原因 在应用中可以看到chrome,但是打不开(说明:原来的ubuntu系统出问题了,这个是备用的硬盘&a…...

零基础设计模式——行为型模式 - 责任链模式

第四部分:行为型模式 - 责任链模式 (Chain of Responsibility Pattern) 欢迎来到行为型模式的学习!行为型模式关注对象之间的职责分配、算法封装和对象间的交互。我们将学习的第一个行为型模式是责任链模式。 核心思想:使多个对象都有机会处…...

【OSG学习笔记】Day 16: 骨骼动画与蒙皮(osgAnimation)

骨骼动画基础 骨骼动画是 3D 计算机图形中常用的技术,它通过以下两个主要组件实现角色动画。 骨骼系统 (Skeleton):由层级结构的骨头组成,类似于人体骨骼蒙皮 (Mesh Skinning):将模型网格顶点绑定到骨骼上,使骨骼移动…...

HDFS分布式存储 zookeeper

hadoop介绍 狭义上hadoop是指apache的一款开源软件 用java语言实现开源框架,允许使用简单的变成模型跨计算机对大型集群进行分布式处理(1.海量的数据存储 2.海量数据的计算)Hadoop核心组件 hdfs(分布式文件存储系统)&a…...