基于hfl/rbt3模型的情感分析学习研究——文本挖掘
参考书籍《HuggingFace自然语言处理详解 》
什么是文本挖掘
文本挖掘(Text mining)有时也被称为文字探勘、文本数据挖掘等,大致相当于文字分析,一般指文本处理过程中产生高质量的信息。高质量的信息通常通过分类和预测来产生,如模式识别。文本挖掘通常涉及输入文本的处理过程(通常进行分析,同时加上一些派生语言特征以及消除杂音,随后插入到数据库中) ,产生结构化数据,并最终评价和解释输出。典型的文本挖掘方法包括文本分类,文本聚类,概念/实体挖掘,生产精确分类,观点分析,文档摘要和实体关系模型 。^[1]^
自然语言处理的基本流程
准备数据集
数据集是进行NLP研究的基础,包含了大量文本数据和标注信息。数据集的质量和多样性对NLP的模型性能有着重要影响。本次作业主要是对预训练的语言模型进行微调,准备训练数据集是为了让模型能够学习到文本数据的特征和规律以更好的理解和处理自然语言。
![]() |
图 1 基本开发流程 |
编码器
本次作业选择的模型是 hfl/rbt3,所以使用匹配的 rbt3编码工具。
编码器主要作用是将语料库中的文本数据转化为计算机可读的编码格式。编码器可对文本数据进行清洗、预处理、分词、标注等操作,提取文本中关键信息。
数据集
数据集经过不断试错,从 wikipedia, bookcorpus, billsum等等中,最终确定选择为chn_senti_corp。
数据集经过编码器处理后,转化成了计算机可处理的数据形式,此时可以对数据集进行后续的数据处理,如缩小训练数据的规模、处理超过512个词长度的数据等等。
定义模型
预训练模型选择 hfl/rbt3,此模型是 HFL 实验室分享至HG模型。
超参数是指模型训练过程中需要预先设定的参数,参数的设定需要一定的实验经验,本次超参数设置主要参考《HuggingFace自然语言处理详解》。
训练及评估
在模型训练过程中为了方便观察模型新能变化,需要定义一个评价函数。在情感分析任务中,正确率指标是重点。
微调hfl/rbt3模型的代码实现
# -*- coding:GB2312 -*- # %% from transformers import AutoTokenizer,TrainingArguments,Trainer, from transformers.data.data_collator import DataCollatorWithPadding from transformers import AutoModelForSequenceClassification from datasets import load_from_disk, Dataset, load_metric import numpy as np import torch # %% tokenizer = AutoTokenizer.from_pretrained('hfl/rbt3') tokenizer.batch_encode_plus( ['一曲青溪一曲山', '鸟飞鱼跃白云间'], truncation=True, ) # %% # 加载数据集 dataset_train = Dataset.from_file('./data/chn_senti_corp/chn_senti_corp-train.arrow') dataset_test = Dataset.from_file('./data/chn_senti_corp/chn_senti_corp-test.arrow') dataset_valid = Dataset.from_file('./data/chn_senti_corp/chn_senti_corp-validation.arrow') # %% # 缩小数据规模,便于测试 dataset_train= dataset_train.shuffle().select(range(3000)) dataset_test= dataset_test.shuffle().select(range(200)) # %% #编码 def f(data):return tokenizer.batch_encode_plus(data['text'],truncation=True) dataset_train=dataset_train.map(f, batched=True, batch_size=100, # num_proc=4, remove_columns=['text']) # %% dataset_test=dataset_test.map(f, batched=True, batch_size=100, remove_columns=['text']) # %% def filter_func(data):return [len(i)<=512 for i in data['input_ids']] dataset_train=dataset_train.filter(filter_func, batched=True, batch_size=100) dataset_test=dataset_test.filter(filter_func, batched=True, batch_size=100) # %% model=AutoModelForSequenceClassification.from_pretrained('hfl/rbt3',num_labels=2) # %% #加载评价指标 metric = load_metric('accuracy') #定义评价函数 from transformers.trainer_utils import EvalPrediction def compute_metrics(eval_pred):logits, labels = eval_predlogits = logits.argmax(axis=1)return metric.compute(predictions=logits, references=labels) # %% #定义训练参数 args = TrainingArguments(output_dir='./output_dir/third/',evaluation_strategy='steps',eval_steps=30,save_strategy='steps',save_steps=30,num_train_epochs=2,learning_rate=1e-4,#定义学习率weight_decay=1e-2,per_device_eval_batch_size=16,per_device_train_batch_size=16,no_cuda=False, ) # %% #定义训练器 trainer = Trainer( model=model, args=args, train_dataset=dataset_train, eval_dataset=dataset_test, compute_metrics=compute_metrics, data_collator=DataCollatorWithPadding(tokenizer), ) #评价模型 trainer.evaluate() trainer.train() trainer.evaluate()
结果展示
从训练前后的评价函数结果可以明显的看到微调训练的结果,见下表。
表 1 训练前后评价结果
模型 | eval_loss | eval_accuracy | eval_runtime | epoch |
---|---|---|---|---|
before | 0.698 | 0.522 | 22.22 | - |
after | 0.239 | 0.923 | 51.68 | 2 |
训练过程中损失函数与正确率的变化可见下图。
![]() | ![]() |
图 2 loss | 图 3 accuracy |
结语
学习初期走过不少弯路,有尝试自己挖掘文本和数据,计划整个大工程,实际操作时却遇到种种难题,网站防爬、检索数据不符合规范、不同网站私有定义太多等等。缺乏相关经验导致的结果是动手时在作业初期就遇到太多问题,作业进度缓慢,信心与耐心也逐渐下降。
在准备数据集时也走过一些误区。以下说几个遇到的问题:一是准备的数据集没有标注且与模型不匹配,导致模型训练时配置出错,无法执行训练。二是数据集过大,执行操作时对笔记本的负担很大,硬盘和存在在训练几小时后直接爆满导致训练失败。其他种种,所以准备一个合适的数据集是重中之重。
实际动手做一个新接触的作业,不能眼高手低或投机取巧让ChatGPT完成整个项目,还是需要找到一份合适的指导资料,静下心熟悉每一个操作。感谢老师及同学们的帮助,《HuggingFace自然语言处理详解》让我真正入门了NLP。
参考文献:
[1] 维基百科编者.文本挖掘[G/OL].维基百科,2019(2019-5-9) [2023-12-15]. https://zh.wikipedia.org/wiki/文本挖掘.
相关文章:

基于hfl/rbt3模型的情感分析学习研究——文本挖掘
参考书籍《HuggingFace自然语言处理详解 》 什么是文本挖掘 文本挖掘(Text mining)有时也被称为文字探勘、文本数据挖掘等,大致相当于文字分析,一般指文本处理过程中产生高质量的信息。高质量的信息通常通过分类和预测来产生&…...
计算机网络基础——常用的中英文网络述语大全,强烈建议收藏
系统网络体系结构(System Network Architecture,SNA) 国际标准化组织(International Organization for Standardization,ISO) 开放系统互连基本参考模型(Open System Interconnection Reference Model。OSI/RM) 物理层(Physical Layer) 数据终端设备…...
c++如何自定义类及成员函数
#include <iostream>using namespace std;class Box {public:double length; // 长度double breadth; // 宽度double height; // 高度// 成员函数声明double get(void);void set( double len, double bre, double hei ); }; // 成员函数定义 double Box::get(void) …...

100G云数据中心网络建设解决方案
随着数据和流量的快速增长,近年来数据中心已经进入了一个全新的100G时代。为了更高效地提供包括人工智能、虚拟现实、4K视频等在内的云计算服务,全球范围内正在大规模建设众多大型100G数据中心,如云数据中心。作为一种新型高效的基础设施&…...

Zoho Desk为何受到跨境电商企业青睐:优势与特点解析
现如今,跨境电商已成为中国外贸发展的一支重要力量,正从一种新业态成长为外贸的新常态。越来越多的国内电商玩家加入了跨境电商这个战场。跨境电商自有其特殊性,海外客户服务不好一样惨遭投诉,Zoho Desk可以帮助您赢得客户满意度&…...

git 删除仓库中多余的文件或者文件夹
目录 问题 解决方案 第一步:同步代码 第二步:删除文件 第三步:提交 第四步:推送远端 问题 在项目开发测试阶段,将无意间将本地敏感的、或无用的文件或目录不小心提交到远程仓库,该怎么解决呢。 解决方…...
搭建git服务器(本地局域网)
搭建git服务器(本地局域网) 创建仓库 (假定在/home/git目录下创建仓库) git init --bare sample.git克隆远程仓库到本地 git clone git192.168.0.100:/home/git/sample.git已有项目,绑定远程仓库 # 查看远程仓库绑定 git remote -v# 解除…...
如何让营销更生动,更有效!
作为专业的营销人员,我们深知在当今竞争激烈的市场环境中,如何让自己的产品或服务脱颖而出,吸引更多的潜在客户,是企业成功的关键。而中昱维信视频短信平台,正是您实现这一目标的得力助手。 一、视频短信,…...
RestTemplate请求参数需要转义 处理
项目需求 iam的token鉴权 需要带转义的回调http路径 用以下处理参数 接口仍然返回异常: public String authBack(String backUrl){ // backUrl http://192.168.1.156:sdm/String state URLEncoder.encode(state, "UTF-8"); }查了一下,Rest…...

使用Kaptcha实现的验证码功能
目录 一.需求 二.验证码功能实现步骤 验证码 引入kaptcha依赖 完成application.yml配置文件 浏览器显示验证码 前端页面 登录页面 验证成功页面 后端 此验证码功能是以SpringBoot框架下基于kaptcha插件来实现的。 一.需求 1.页面生成验证码 2.输入验证码ÿ…...

【无标题】CTF之SQLMAP
拿这一题来说 抓个包 复制报文 启动我们的sqlmap kali里边 sqlmap -r 文件路径 --dump --dbs 数据库 --tables 表...

【Qt之Quick模块】1. 概述及Quick应用程序创建流程
概述 Qt的Quick模块是用于创建现代化、动态和响应式用户界面的工具集。它是基于QML(Qt Meta-Object Language)和JavaScript的。 QML是一种声明性的语言,用于描述用户界面的结构和行为。它使用层叠样式表(CSS)的语法来…...

C语言-数组指针笔试题讲解(1)-干货满满!!!
文章目录 ▶️1.sizeof和strlen的对比💯➡️1.1 sizeof是什么?💯➡️1.2sizeof用法举例💯▶️1.3strlen是什么?💯▶️1.4 strlen函数用法举例:💯▶️1.5 strlen和sizeof的对比&#…...

springboot整合vue,将vue项目整合到springboot项目中
将vue项目打包后,与springboot项目整合。 第一步,使用springboot中的thymeleaf模板引擎 导入依赖 <!-- thymeleaf 模板 --><dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-t…...

C++ 二叉搜索树(BST)的实现(非递归版本与递归版本)与应用
C 二叉搜索树的实现与应用 一.二叉搜索树的特点二.我们要实现的大致框架三.Insert四.InOrder和Find1.InOrder2.Find 五.Erase六.Find,Insert,Erase的递归版本1.FindR2.InsertR3.EraseR 七.析构,拷贝构造,赋值运算符重载1.析构2.拷贝构造3.赋值运算重载 八.Key模型完整代码九.二…...

分类预测 | Matlab实现AOA-SVM算术优化支持向量机的数据分类预测【23年新算法】
分类预测 | Matlab实现AOA-SVM算术优化支持向量机的数据分类预测【23年新算法】 目录 分类预测 | Matlab实现AOA-SVM算术优化支持向量机的数据分类预测【23年新算法】分类效果基本描述程序设计参考资料 分类效果 基本描述 1.Matlab实现AOA-SVM算术优化支持向量机的数据分类预测…...
代码随想录算法训练营第七天 | 454.四数相加II、383. 赎金信、15. 三数之和 、18. 四数之和
454.四数相加II 题目链接:454.四数相加II 给你四个整数数组 nums1、nums2、nums3 和 nums4 ,数组长度都是 n ,请你计算有多少个元组 (i, j, k, l) 能满足: 0 < i, j, k, l < nnums1[i] nums2[j] nums3[k] nums4[l] 0…...

SpringBoot 3.2.0 版本 mysql 依赖下载错误
最近想尝试一下最新的 SpringBoot 项目,于是将自己的开源项目进行了一些升级。 JDK 版本从 JDK8 升级至 JDK17。SpringBoot 版本从 SpringBoot 2.7.3 升级到 SpringBoot 3.2.0 其中 JDK 的升级比较顺利,毕竟 JDK 的旧版本兼容性一直非常好。 但是在升级…...

内网穿透的应用-如何结合Cpolar内网穿透工具实现在IDEA中远程访问家里或者公司的数据库
文章目录 1. 本地连接测试2. Windows安装Cpolar3. 配置Mysql公网地址4. IDEA远程连接Mysql小结 5. 固定连接公网地址6. 固定地址连接测试 IDEA作为Java开发最主力的工具,在开发过程中需要经常用到数据库,如Mysql数据库,但是在IDEA中只能连接本…...

ElasticSearch单机或集群未授权访问漏洞
漏洞处理方法: 1、可以使用系统防火墙 来做限制只允许ES集群和Server节点的IP来访问漏洞节点的9200端口,其他的全部拒绝。 2、在ES节点上设置用户密码 漏洞现象:直接访问9200端口不需要密码验证 修复过程 2.1 生成认证文件 必须要生成…...

wordpress后台更新后 前端没变化的解决方法
使用siteground主机的wordpress网站,会出现更新了网站内容和修改了php模板文件、js文件、css文件、图片文件后,网站没有变化的情况。 不熟悉siteground主机的新手,遇到这个问题,就很抓狂,明明是哪都没操作错误&#x…...

Appium+python自动化(十六)- ADB命令
简介 Android 调试桥(adb)是多种用途的工具,该工具可以帮助你你管理设备或模拟器 的状态。 adb ( Android Debug Bridge)是一个通用命令行工具,其允许您与模拟器实例或连接的 Android 设备进行通信。它可为各种设备操作提供便利,如安装和调试…...
STM32+rt-thread判断是否联网
一、根据NETDEV_FLAG_INTERNET_UP位判断 static bool is_conncected(void) {struct netdev *dev RT_NULL;dev netdev_get_first_by_flags(NETDEV_FLAG_INTERNET_UP);if (dev RT_NULL){printf("wait netdev internet up...");return false;}else{printf("loc…...

Cilium动手实验室: 精通之旅---20.Isovalent Enterprise for Cilium: Zero Trust Visibility
Cilium动手实验室: 精通之旅---20.Isovalent Enterprise for Cilium: Zero Trust Visibility 1. 实验室环境1.1 实验室环境1.2 小测试 2. The Endor System2.1 部署应用2.2 检查现有策略 3. Cilium 策略实体3.1 创建 allow-all 网络策略3.2 在 Hubble CLI 中验证网络策略源3.3 …...

页面渲染流程与性能优化
页面渲染流程与性能优化详解(完整版) 一、现代浏览器渲染流程(详细说明) 1. 构建DOM树 浏览器接收到HTML文档后,会逐步解析并构建DOM(Document Object Model)树。具体过程如下: (…...
Hive 存储格式深度解析:从 TextFile 到 ORC,如何选对数据存储方案?
在大数据处理领域,Hive 作为 Hadoop 生态中重要的数据仓库工具,其存储格式的选择直接影响数据存储成本、查询效率和计算资源消耗。面对 TextFile、SequenceFile、Parquet、RCFile、ORC 等多种存储格式,很多开发者常常陷入选择困境。本文将从底…...

HarmonyOS运动开发:如何用mpchart绘制运动配速图表
##鸿蒙核心技术##运动开发##Sensor Service Kit(传感器服务)# 前言 在运动类应用中,运动数据的可视化是提升用户体验的重要环节。通过直观的图表展示运动过程中的关键数据,如配速、距离、卡路里消耗等,用户可以更清晰…...
【Go语言基础【12】】指针:声明、取地址、解引用
文章目录 零、概述:指针 vs. 引用(类比其他语言)一、指针基础概念二、指针声明与初始化三、指针操作符1. &:取地址(拿到内存地址)2. *:解引用(拿到值) 四、空指针&am…...

深度学习水论文:mamba+图像增强
🧀当前视觉领域对高效长序列建模需求激增,对Mamba图像增强这方向的研究自然也逐渐火热。原因在于其高效长程建模,以及动态计算优势,在图像质量提升和细节恢复方面有难以替代的作用。 🧀因此短时间内,就有不…...

算法打卡第18天
从中序与后序遍历序列构造二叉树 (力扣106题) 给定两个整数数组 inorder 和 postorder ,其中 inorder 是二叉树的中序遍历, postorder 是同一棵树的后序遍历,请你构造并返回这颗 二叉树 。 示例 1: 输入:inorder [9,3,15,20,7…...