当前位置: 首页 > news >正文

树莓派通过网线连接电脑并且设置设置链接wifi

好久没玩过树莓派了,系统进不去了,需要记录一下,之前总觉得自己会了,但是还是需要不断的翻阅资料。

树莓派 配置SD卡开启ssh - 哔哩哔哩

树莓派通过网线连接ssh 

直接在sd卡建立一个ssh的文件,不要带任何后戳

ip查看的命令用到的是ipconfig 或者arp -a

以上方法不保证成功,但是有个路由器,网络直接链接,就可以直接链接成功

配置树莓派自动连接wifi

参考文章树莓派修改网络配置(更改WIFI)_树莓派wifi设置-CSDN博客

sudo nano /etc/wpa_supplicant/wpa_supplicant.conf
country=CN
ctrl_interface=DIR=/var/run/wpa_supplicant GROUP=netdev
update_config=1
network={
ssid="wifi1"
psk="password1"
priority=10
}
network={
ssid="wifi2"
psk="password2"
priority=9
}

发现树莓派安装scarpy失败解决方案,更新pip方案

树莓派安装scrapy环境 - 代码先锋网

相关文章:

树莓派通过网线连接电脑并且设置设置链接wifi

好久没玩过树莓派了,系统进不去了,需要记录一下,之前总觉得自己会了,但是还是需要不断的翻阅资料。 树莓派 配置SD卡开启ssh - 哔哩哔哩 树莓派通过网线连接ssh 直接在sd卡建立一个ssh的文件,不要带任何后戳 ip查…...

C#拼接JSON

一、业务背景 最近项目需要与U8c对接,实现增删改查,借此机会,梳理一下C#解析Json字符串的问题。 这篇文章,先以新增接口为例。 二、新增接口 查看需要传入的json格式。 拼接json,无非就是{}和[]的来回嵌套。 首先&am…...

评价机器学习模型的指标

为了衡量一个机器学习模型的好坏,需要给定一个测试集,用模型对测试集中的每一个样本进行预测,并根据预测结果计算评价分数。 对于分类问题,常见的评价标准有准确率、精确率、召回率和F值等。给定测试集 𝒯 {(&#x1…...

C# WPF上位机开发(日志调试)

【 声明:版权所有,欢迎转载,请勿用于商业用途。 联系信箱:feixiaoxing 163.com】 程序开发的过程中,调试肯定是少不了的。比如说,这个时候,我们可以设置断点、查看变量、检查函数调用堆栈等等。…...

AR室内导航如何实现?技术与原理分析

随着科技的进步,我们生活中许多方面正在被重新定义。其中之一就是导航,尤其是室内导航。增强现实(AR)技术的出现为室内导航带来了革命性的变革。本文将深入探讨AR室内导航的技术与原理,以及它如何改变我们的生活方式。…...

计算机网络:物理层(奈氏准则和香农定理,含例题)

带你速通计算机网络期末 文章目录 一、码元和带宽 1、什么是码元 2、数字通信系统数据传输速率的两种表示方法 2.1、码元传输速率 2.2、信息传输速率 3、例题 3.1、例题1 3.2、例题2 4、带宽 二、奈氏准则(奈奎斯特定理) 1、奈氏准则简介 2、…...

天津仁爱学院专升本化学工程与工艺专业 《无机化学》考试大纲

天津仁爱学院化学工程与工艺专业高职升本入学考试《无机化学》课程考试大纲 一.参考教材 杨宏孝《无机化学简明教程》以及《无机化学简明教程学习指南》,高等教育出版社,2011年版。 二.考试基本要求 本考试要求将《无机化学》…...

GO 的 socks5代理 编写

这里学习一下 socks5 代理的编写 网上有很多 学习一下 go 语言实战入门案例之实现Socks5 - 知乎 滑动验证页面 socks5协议原理学习-腾讯云开发者社区-腾讯云 (tencent.com) 首先我们要了解一下socks5的代理方式 socks5 是基于 认证建立连接转发数据 所形成的代理 我们只…...

MYSQL-简单的联表查询示例

假设我们有两个表,一个是users表,包含用户的ID和姓名;另一个是orders表,包含订单的ID、用户ID和订单金额。我们想要关联这两个表,查询出每个用户的订单总金额。 首先,我们可以使用以下SQL查询获取每个用户…...

Python基于joblib的并行计算进程线程multiprocessing多核并行计算

文章目录 Python基于joblib的并行计算适用场景使用示例总结爬虫&joblib使用`joblib`的场景注意事项使用实例结论joblib介绍简单示例多参数并行并行时CPU是怎么分配的何时选用并行进程&线程进程和线程之间的关系...

左右列的单元格合并

EasyExcel导出合并单元格,左右列的单元格合并 1、导出的实体类,也就是表头 Data public class CityCapacityPo {ExcelProperty(value "时间",index 0)private String time;ExcelProperty(value "出口",index 1)private String …...

机器学习 | 决策树 Decision Tree

—— 分而治之,逐个击破 把特征空间划分区域 每个区域拟合简单模型 分级分类决策 1、核心思想和原理 举例: 特征选择、节点分类、阈值确定 2、信息嫡 熵本身代表不确定性,是不确定性的一种度量。 熵越大,不确定性越高,…...

面试题总结(十四)【系统移植】【华清远见西安中心】

你用过哪些Bootloader?有什么区别? 作为一个AI助手,我没有直接使用过Bootloader。但我可以为您提供一些关于常见Bootloader的信息和他们之间的区别。 1. GRUB (GRand Unified Bootloader):GRUB是一个功能强大且广泛使用的Bootload…...

【Spark精讲】Spark RDD弹性体现在哪些方面?

什么是“弹性”? 一般对于分布式系统,“弹性”指的是可以根据计算规模进行动态伸缩的特性。当计算量增长时,可以动态增加资源来满足计算需求,而当计算量减少时,又可以降低资源配置来节约成本。 参考:什么是…...

【从客户端理解Kafka的使用方式】

文章目录 一、从基础的客户端说起1、消息发送者主流程2、消息消费者主流程 二、从客户端属性来梳理客户端工作机制1、消费者分组消费机制2、生产者拦截器机制3、消息序列化机制4、消息分区路由机制5、生产者消息缓存机制6、发送应答机制 三、客户端流程总结四、SpringBoot集成K…...

『OPEN3D』1.5.4 动手实现点云八叉树(OctoTree)最近邻

本专栏地址: https://blog.csdn.net/qq_41366026/category_12186023.html?spm=1001.2014.3001.5482 在二维和三维空间中,我们可以采用四叉树(Quad tree)和八叉树(Octree)这两种特定的数据结构来处理空间分割。这些树形结构可以看作是K-d树在不同维度下的扩展。…...

非制冷红外成像技术实现高灵敏度和高分辨率

非制冷红外成像技术实现高灵敏度和高分辨率主要依赖于以下几个方面: 探测器设计:非制冷红外成像技术采用的探测器通常具有高灵敏度和高分辨率的特点。这些探测器能够有效地接收并转换红外辐射,从而产生高质量的图像信息。 光学系统设计&…...

@Resource 和 @Autowired区别是什么?

Resource 和 Autowired 时,它们都是用于依赖注入的注解,但它们有一些不同之处。 来源: Resource 是Java EE标准的一部分,而且是JDK提供的,不属于Spring框架的注解。它的使用范围更广泛,不仅可以用在Spring中…...

K8S的一个pod中运行多个容器

通过deployment的方式部署 创建一个deployment文件 [rootk8s-master1 pods]# cat app.yaml apiVersion: apps/v1 kind: Deployment metadata:name: dsfnamespace: applabels:app: dsf spec:replicas: 1 #实例的个数selector:matc…...

《每天一分钟学习C语言·一》

1、转义字符:\n换行,\t前进一个tab键,\b退格键 2、八进制前面有0,%o或者%#o表示八进制,十六进制前有0X,%0x或者%#0x表示十六进制 3、%u打印无符号数,%g显示小数,类似于%f&#xff…...

测试微信模版消息推送

进入“开发接口管理”--“公众平台测试账号”,无需申请公众账号、可在测试账号中体验并测试微信公众平台所有高级接口。 获取access_token: 自定义模版消息: 关注测试号:扫二维码关注测试号。 发送模版消息: import requests da…...

label-studio的使用教程(导入本地路径)

文章目录 1. 准备环境2. 脚本启动2.1 Windows2.2 Linux 3. 安装label-studio机器学习后端3.1 pip安装(推荐)3.2 GitHub仓库安装 4. 后端配置4.1 yolo环境4.2 引入后端模型4.3 修改脚本4.4 启动后端 5. 标注工程5.1 创建工程5.2 配置图片路径5.3 配置工程类型标签5.4 配置模型5.…...

基于数字孪生的水厂可视化平台建设:架构与实践

分享大纲: 1、数字孪生水厂可视化平台建设背景 2、数字孪生水厂可视化平台建设架构 3、数字孪生水厂可视化平台建设成效 近几年,数字孪生水厂的建设开展的如火如荼。作为提升水厂管理效率、优化资源的调度手段,基于数字孪生的水厂可视化平台的…...

Psychopy音频的使用

Psychopy音频的使用 本文主要解决以下问题: 指定音频引擎与设备;播放音频文件 本文所使用的环境: Python3.10 numpy2.2.6 psychopy2025.1.1 psychtoolbox3.0.19.14 一、音频配置 Psychopy文档链接为Sound - for audio playback — Psy…...

令牌桶 滑动窗口->限流 分布式信号量->限并发的原理 lua脚本分析介绍

文章目录 前言限流限制并发的实际理解限流令牌桶代码实现结果分析令牌桶lua的模拟实现原理总结: 滑动窗口代码实现结果分析lua脚本原理解析 限并发分布式信号量代码实现结果分析lua脚本实现原理 双注解去实现限流 并发结果分析: 实际业务去理解体会统一注…...

Maven 概述、安装、配置、仓库、私服详解

目录 1、Maven 概述 1.1 Maven 的定义 1.2 Maven 解决的问题 1.3 Maven 的核心特性与优势 2、Maven 安装 2.1 下载 Maven 2.2 安装配置 Maven 2.3 测试安装 2.4 修改 Maven 本地仓库的默认路径 3、Maven 配置 3.1 配置本地仓库 3.2 配置 JDK 3.3 IDEA 配置本地 Ma…...

使用 SymPy 进行向量和矩阵的高级操作

在科学计算和工程领域,向量和矩阵操作是解决问题的核心技能之一。Python 的 SymPy 库提供了强大的符号计算功能,能够高效地处理向量和矩阵的各种操作。本文将深入探讨如何使用 SymPy 进行向量和矩阵的创建、合并以及维度拓展等操作,并通过具体…...

大语言模型(LLM)中的KV缓存压缩与动态稀疏注意力机制设计

随着大语言模型(LLM)参数规模的增长,推理阶段的内存占用和计算复杂度成为核心挑战。传统注意力机制的计算复杂度随序列长度呈二次方增长,而KV缓存的内存消耗可能高达数十GB(例如Llama2-7B处理100K token时需50GB内存&a…...

RSS 2025|从说明书学习复杂机器人操作任务:NUS邵林团队提出全新机器人装配技能学习框架Manual2Skill

视觉语言模型(Vision-Language Models, VLMs),为真实环境中的机器人操作任务提供了极具潜力的解决方案。 尽管 VLMs 取得了显著进展,机器人仍难以胜任复杂的长时程任务(如家具装配),主要受限于人…...

nnUNet V2修改网络——暴力替换网络为UNet++

更换前,要用nnUNet V2跑通所用数据集,证明nnUNet V2、数据集、运行环境等没有问题 阅读nnU-Net V2 的 U-Net结构,初步了解要修改的网络,知己知彼,修改起来才能游刃有余。 U-Net存在两个局限,一是网络的最佳深度因应用场景而异,这取决于任务的难度和可用于训练的标注数…...