76. 最小覆盖子串。优化官方题解!
leetcode原题如下:
给你一个字符串 s
、一个字符串 t
。返回 s
中涵盖 t
所有字符的最小子串。如果 s
中不存在涵盖 t
所有字符的子串,则返回空字符串 ""
。
注意:
- 对于
t
中重复字符,我们寻找的子字符串中该字符数量必须不少于t
中该字符数量。 - 如果
s
中存在这样的子串,我们保证它是唯一的答案。
解题思路---滑动窗口
如何判断当前的窗口包含所有 t 所需的字符呢?我们可以用一个哈希表表示 t 中所有的字符以及它们的个数,用一个哈希表动态维护窗口中所有的字符以及它们的个数,如果这个动态表中包含 t 的哈希表中的所有字符,并且对应的个数都不小于 t 的哈希表中各个字符的个数,那么当前的窗口是「可行」的。
官方题解:
Map<Character, Integer> ori = new HashMap<Character, Integer>();Map<Character, Integer> cnt = new HashMap<Character, Integer>();public String minWindow(String s, String t) {Map<Character, Integer> ori = new HashMap<>();Map<Character, Integer> cnt = new HashMap<>();// 预处理,初始化 ori 表for (int i = 0; i < t.length(); i++) {char c = t.charAt(i);ori.put(c, ori.getOrDefault(c, 0) + 1);}int l = 0, r = 0;int len = Integer.MAX_VALUE, ansL = -1, ansR = -1;int sLen = s.length();int required = ori.size(); // 需要匹配的字符种类数量int formed = 0; // 已经匹配的字符种类数量while (r < sLen) {char c = s.charAt(r);cnt.put(c, cnt.getOrDefault(c, 0) + 1);if (ori.containsKey(c) && cnt.get(c).equals(ori.get(c))) {formed++;}while (formed == required && l <= r) {if (r - l + 1 < len) {len = r - l + 1;ansL = l;ansR = l + len;}char leftChar = s.charAt(l);cnt.put(leftChar, cnt.get(leftChar) - 1);if (ori.containsKey(leftChar) && cnt.get(leftChar) < ori.get(leftChar)) {formed--;}l++;}r++;}return ansL == -1 ? "" : s.substring(ansL, ansR);}
注意:这里 t 中可能出现重复的字符,所以我们要记录字符的个数。
考虑如何优化? 如果 s=XX⋯XABCXXXX,t=ABC,那么显然 [XX⋯XABC]是第一个得到的「可行」区间,得到这个可行区间后,我们按照「收缩」窗口的原则更新左边界,得到最小区间。我们其实做了一些无用的操作,就是更新右边界的时候「延伸」进了很多无用的 X,更新左边界的时候「收缩」扔掉了这些无用的 X,做了这么多无用的操作,只是为了得到短短的 ABC。没错,其实在 s 中,有的字符我们是不关心的,我们只关心 t中出现的字符,我们可不可以先预处理 s,扔掉那些 t 中没有出现的字符,然后再做滑动窗口呢?也许你会说,这样可能出现 XXABXXC的情况,在统计长度的时候可以扔掉前两个 X,但是不扔掉中间的 X,怎样解决这个问题呢?优化后的时空复杂度又是多少?代码给出优化的版本.
public class MinimumWindowSubstring {public String minWindow(String s, String t) {// 用于记录 t 中各字符需要匹配的次数Map<Character, Integer> ori = new HashMap<>();// 用于记录当前窗口中各字符已匹配的次数Map<Character, Integer> cnt = new HashMap<>();// 预处理,初始化 ori 表for (int i = 0; i < t.length(); i++) {char c = t.charAt(i);ori.put(c, ori.getOrDefault(c, 0) + 1);}int l = 0, r = 0; // 窗口的左右边界int len = Integer.MAX_VALUE; // 记录当前最小窗口的长度int ansL = -1, ansR = -1; // 记录当前最小窗口的左右边界int sLen = s.length(); // 字符串 s 的长度int required = ori.size(); // 需要匹配的字符种类数量int formed = 0; // 已经匹配的字符种类数量// 右指针滑动while (r < sLen) {char c = s.charAt(r);cnt.put(c, cnt.getOrDefault(c, 0) + 1);// 如果当前字符在 ori 表中,并且已匹配次数等于 ori 表中的次数,增加已匹配字符种类数量if (ori.containsKey(c) && cnt.get(c).equals(ori.get(c))) {formed++;}// 左指针滑动,窗口收缩while (formed == required && l <= r) {// 更新最小窗口的长度和边界if (r - l + 1 < len) {len = r - l + 1;ansL = l;ansR = l + len;}// 移动左指针,减少已匹配字符的次数char leftChar = s.charAt(l);cnt.put(leftChar, cnt.get(leftChar) - 1);// 如果左边界字符在 ori 表中,并且减少后的次数小于 ori 表中的次数,减少已匹配字符种类数量if (ori.containsKey(leftChar) && cnt.get(leftChar) < ori.get(leftChar)) {formed--;}l++;}// 右指针继续滑动r++;}// 返回最小窗口对应的子串return ansL == -1 ? "" : s.substring(ansL, ansR);}
}
这段代码中的核心思想是使用滑动窗口来找到包含字符串 t
中所有字符的最小窗口。下面是代码中各部分的解释:
-
ori
和cnt
的初始化:ori
表用于记录字符串t
中各字符需要匹配的次数。cnt
表用于记录当前窗口中各字符已匹配的次数。
-
预处理,初始化
ori
表:- 遍历字符串
t
,将其中各字符及其需要匹配的次数记录在ori
表中。
- 遍历字符串
-
窗口的左右边界
l
和r
:- 使用两个指针
l
和r
来确定窗口。
- 使用两个指针
-
required
和formed
:required
记录需要匹配的字符种类数量,即ori
表的大小。formed
记录已经匹配的字符种类数量,初始为 0。
-
右指针滑动(
while (r < sLen)
):- 不断移动右指针
r
,直到窗口包含了字符串s
中的所有字符。
- 不断移动右指针
-
左指针滑动,窗口收缩(
while (formed == required && l <= r)
):- 移动左指针
l
,尝试缩小窗口的大小。 - 更新最小窗口的长度和边界。
- 移动左指针
-
左右指针继续滑动,直至右指针到达字符串末尾:
相关文章:
76. 最小覆盖子串。优化官方题解!
leetcode原题如下: 给你一个字符串 s 、一个字符串 t 。返回 s 中涵盖 t 所有字符的最小子串。如果 s 中不存在涵盖 t 所有字符的子串,则返回空字符串 "" 。 注意: 对于 t 中重复字符,我们寻找的子字符串中该字符数量…...
在国产GPU寒武纪MLU上快速上手Pytorch使用指南
本文旨在帮助Pytorch使用者快速上手使用寒武纪MLU。以代码块为主,文字尽可能简洁,许多部分对标NVIDIA CUDA。不正确的地方请留言更正。本文不定期更新。 文章目录 前言Cambricon PyTorch的Python包torch_mlu导入将模型加载到MLU上model.to(mlu)定义损失函…...

重生奇迹MU觉醒战士攻略
剑士连招技巧:生命之光:PK前起手式,增加血上限。 雷霆裂闪:眩晕住对手,剑士PK战士第一技能,雷霆裂闪是否使用好关系到胜负。 霹雳回旋斩:雷霆裂闪后可以选择用霹雳回旋斩跑出一定范围(因为对手…...

美颜技术详解:深入了解视频美颜SDK的工作机制
本文将深入探讨视频美颜SDK的工作机制,揭示其背后的科技奥秘和算法原理。 1.引言 视频美颜SDK作为一种集成到应用程序中的技术工具,通过先进的算法和图像处理技术,为用户提供令人印象深刻的实时美颜效果。 2.视频美颜SDK的基本工作原理 首…...

3D模型格式转换工具如何实现高性能数据转换?请看CAE系统开发实例!
客户背景 DP Technology是全球知名的CAM的供应商,在全球8个国家设有18个办事处。DP Technology提供的CAMESPRIT系统是一个用于数控编程,优化和仿真全方面的CAM系统。CAMESPRIT的客户来自多个行业,因此支持多种CAD工具和文件格式显得格外重…...

多级缓存:亿级流量的缓存方案
文章目录 一.多级缓存的引入二.JVM进程缓存三.Lua语法入门四.多级缓存1.OpenResty2.查询Tomcat3.Redis缓存预热4.查询Redis缓存5.Nginx本地缓存6.缓存同步 一.多级缓存的引入 传统缓存的问题 传统的缓存策略一般是请求到达Tomcat后,先查询Redis,如果未…...

C语言——高精度乘法
一、引子 高精度乘法相较于高精度加法和减法有更多的不同,加法和减法是一位对应一位进行操作的,而乘法是一个数的每一位对另一个数的每一位进行操作,需要的计算步骤更多。 二、核心算法 void Calculate(int num1[], int num2[], int numres…...

为什么C语言没有被C++所取代呢?
今日话题,为什么C语言没有被C所取代呢?虽然C是一个功能更强大的语言,但C语言在嵌入式领域仍然广泛使用,因为它更轻量级、更具可移植性,并且更适合在资源受限的环境中工作。这就是为什么C语言没有被C所取代的原因。如果…...
基于Spring的枚举类+策略模式设计(以实现多种第三方支付功能为例)
摘要 最近阅读《贯彻设计模式》这本书,里面使用一个更真实的项目来介绍设计模式的使用,相较于其它那些只会以披萨、厨师为例的设计模式书籍是有些进步。但这书有时候为了使用设计模式而强行朝着对应的 UML 图来设计类结构,并且对设计理念缺少…...

基于Linphone android sdk开发Android软话机
1.Linphone简介 1.1 简介 LinPhone是一个遵循GPL协议的开源网络电话或者IP语音电话(VOIP)系统,其主要如下。使用linphone,开发者可以在互联网上随意的通信,包括语音、视频、即时文本消息。linphone使用SIP协议&#…...

[论文分享]TimeDRL:多元时间序列的解纠缠表示学习
论文题目:TimeDRL: Disentangled Representation Learning for Multivariate Time-Series 论文地址:https://arxiv.org/abs/2312.04142 代码地址:暂无 关键要点:多元时间序列,自监督表征学习,分类和预测 摘…...

分享一个好看的vs主题
最近发现了一个很好看的vs主题(个人认为挺好看的),想要分享给大家。 主题的名字叫NightOwl,和vscode的主题颜色挺像的。操作方法也十分简单,首先我们先在最上面哪一行找到扩展。 然后点击管理扩展,再搜索栏…...

什么是云呼叫中心?
云呼叫中心作为一种高效的企业呼叫管理方案,越来越受到企业的青睐,常被用于管理客服和销售业务。那么,云呼叫中心到底是什么? 什么是云呼叫中心? 云呼叫中心是一种基于互联网的呼叫管理系统,与传统的呼叫…...

还在用nvm?来试试更快的node版本管理工具——fnm
前言 📫 大家好,我是南木元元,热衷分享有趣实用的文章,希望大家多多支持,一起进步! 🍅 个人主页:南木元元 目录 什么是node版本管理 常见的node版本管理工具 fnm是什么 安装fnm …...

【Hadoop精讲】HDFS详解
目录 理论知识点 角色功能 元数据持久化 安全模式 SecondaryNameNode(SNN) 副本放置策略 HDFS写流程 HDFS读流程 HA高可用 CPA原则 Paxos算法 HA解决方案 HDFS-Fedration解决方案(联邦机制) 理论知识点 角色功能 元数据持久化 另一台机器就…...

企业需要哪些数字化管理系统?
企业需要哪些数字化管理系统? ✅企业引进管理系统肯定是为了帮助整合和管理大量的数据,从而优化业务流程,提高工作效率和生产力。 ❌但是,如果各个系统之间不互通、无法互相关联数据的话,反而会增加工作量和时间成本…...

【vue】开发常见问题及解决方案
有一些问题不限于 Vue,还适应于其他类型的 SPA 项目。 1. 页面权限控制和登陆验证页面权限控制 页面权限控制是什么意思呢? 就是一个网站有不同的角色,比如管理员和普通用户,要求不同的角色能访问的页面是不一样的。如果一个页…...
飞天使-k8s知识点3-卸载yum 安装的k8s
要彻底卸载使用yum安装的 Kubernetes 集群,您可以按照以下步骤进行操作: 停止 Kubernetes 服务: sudo systemctl stop kubelet sudo systemctl stop docker 卸载 Kubernetes 组件: sudo yum remove -y kubelet kubeadm kubectl…...
ZooKeeper 集群搭建
文章目录 ZooKeeper 概述选举机制搭建前准备分布式配置分布式安装解压缩并重命名配置环境配置服务器编号配置文件 操作集群编写脚本运行脚本搭建过程中常见错误 ZooKeeper 概述 Zookeeper 是一个开源的分布式服务协调框架,由Apache软件基金会开发和维护。以下是对Z…...
Meson:现代的构建系统
Meson是一款现代化、高性能的开源构建系统,旨在提供简单、快速和可读性强的构建脚本。Meson被设计为跨平台的,支持多种编程语言,包括C、C、Fortran、Python等。其目标是替代传统的构建工具,如Autotools和CMake,提供更简…...
Spring Boot 实现流式响应(兼容 2.7.x)
在实际开发中,我们可能会遇到一些流式数据处理的场景,比如接收来自上游接口的 Server-Sent Events(SSE) 或 流式 JSON 内容,并将其原样中转给前端页面或客户端。这种情况下,传统的 RestTemplate 缓存机制会…...
在Ubuntu中设置开机自动运行(sudo)指令的指南
在Ubuntu系统中,有时需要在系统启动时自动执行某些命令,特别是需要 sudo权限的指令。为了实现这一功能,可以使用多种方法,包括编写Systemd服务、配置 rc.local文件或使用 cron任务计划。本文将详细介绍这些方法,并提供…...

让AI看见世界:MCP协议与服务器的工作原理
让AI看见世界:MCP协议与服务器的工作原理 MCP(Model Context Protocol)是一种创新的通信协议,旨在让大型语言模型能够安全、高效地与外部资源进行交互。在AI技术快速发展的今天,MCP正成为连接AI与现实世界的重要桥梁。…...
Android Bitmap治理全解析:从加载优化到泄漏防控的全生命周期管理
引言 Bitmap(位图)是Android应用内存占用的“头号杀手”。一张1080P(1920x1080)的图片以ARGB_8888格式加载时,内存占用高达8MB(192010804字节)。据统计,超过60%的应用OOM崩溃与Bitm…...

项目部署到Linux上时遇到的错误(Redis,MySQL,无法正确连接,地址占用问题)
Redis无法正确连接 在运行jar包时出现了这样的错误 查询得知问题核心在于Redis连接失败,具体原因是客户端发送了密码认证请求,但Redis服务器未设置密码 1.为Redis设置密码(匹配客户端配置) 步骤: 1).修…...

C# 求圆面积的程序(Program to find area of a circle)
给定半径r,求圆的面积。圆的面积应精确到小数点后5位。 例子: 输入:r 5 输出:78.53982 解释:由于面积 PI * r * r 3.14159265358979323846 * 5 * 5 78.53982,因为我们只保留小数点后 5 位数字。 输…...

HDFS分布式存储 zookeeper
hadoop介绍 狭义上hadoop是指apache的一款开源软件 用java语言实现开源框架,允许使用简单的变成模型跨计算机对大型集群进行分布式处理(1.海量的数据存储 2.海量数据的计算)Hadoop核心组件 hdfs(分布式文件存储系统)&a…...

面向无人机海岸带生态系统监测的语义分割基准数据集
描述:海岸带生态系统的监测是维护生态平衡和可持续发展的重要任务。语义分割技术在遥感影像中的应用为海岸带生态系统的精准监测提供了有效手段。然而,目前该领域仍面临一个挑战,即缺乏公开的专门面向海岸带生态系统的语义分割基准数据集。受…...

LLMs 系列实操科普(1)
写在前面: 本期内容我们继续 Andrej Karpathy 的《How I use LLMs》讲座内容,原视频时长 ~130 分钟,以实操演示主流的一些 LLMs 的使用,由于涉及到实操,实际上并不适合以文字整理,但还是决定尽量整理一份笔…...

iview框架主题色的应用
1.下载 less要使用3.0.0以下的版本 npm install less2.7.3 npm install less-loader4.0.52./src/config/theme.js文件 module.exports {yellow: {theme-color: #FDCE04},blue: {theme-color: #547CE7} }在sass中使用theme配置的颜色主题,无需引入,直接可…...