当前位置: 首页 > news >正文

智能优化算法应用:基于野狗算法3D无线传感器网络(WSN)覆盖优化 - 附代码

智能优化算法应用:基于野狗算法3D无线传感器网络(WSN)覆盖优化 - 附代码

文章目录

  • 智能优化算法应用:基于野狗算法3D无线传感器网络(WSN)覆盖优化 - 附代码
    • 1.无线传感网络节点模型
    • 2.覆盖数学模型及分析
    • 3.野狗算法
    • 4.实验参数设定
    • 5.算法结果
    • 6.参考文献
    • 7.MATLAB代码

摘要:本文主要介绍如何用野狗算法进行3D无线传感器网(WSN)覆盖优化。

1.无线传感网络节点模型

本文主要基于0/1模型,进行寻优。在二维平面上传感器节点的感知范围是一个以节点为圆心,半径为 R n R_n Rn的圆形区域,该圆形区域通常被称为该节点的“感知圆盘”, R n R_n Rn称为传感器节点的感知半径,感知半径与节点内置传感器件的物理特性有关,假设节点 n n n的位置坐标为 ( x n , y n , z n ) (x_n,y_n,z_n) (xn,yn,zn)在0-1感知模型中,对于平面上任意一点 p ( x p , y p , z p ) p(x_p,y_p,z_p) p(xp,yp,zp),则节点 n n n监测到区域内点 p p p的事件发生概率为:
P r ( n , p ) = { 1 , d ( n , p ) ≤ R n 0 , e s l e (1) P_r(n,p)=\begin{cases}1, \,d(n,p)\leq R_n\\ 0,\, esle \end{cases}\tag{1} Pr(n,p)={1,d(n,p)Rn0,esle(1)
其中 d ( n , p ) = ( x n − x p ) 2 + ( y n − y p ) 2 + ( z n − z p ) 2 d(n,p)=\sqrt{(x_n-x_p)^2+(y_n-y_p)^2 + (z_n-z_p)^2} d(n,p)=(xnxp)2+(ynyp)2+(znzp)2 为点和之间的欧式距离。

2.覆盖数学模型及分析

现假定目标监测区域为二维平面,在区域 A r e a Area Area上投放同型结构传感器节点的数目为N,每个节点的位置坐标值假设已被初始化赋值,且节点的感知半径r。传感器节点集则表示为:
N o d e { x 1 , . . . , x N } (2) Node\{x_1,...,x_N\} \tag{2} Node{x1,...,xN}(2)
其中 n o d e i = { x i , y i , z i , r } node_i=\{x_i,y_i,z_i,r\} nodei={xi,yi,zi,r},表示以节点 ( x i , y i , z i ) (x_i,y_i,z_i) (xi,yi,zi)为圆心,r为监测半径的球,假定监测区域 A r e a Area Area被数字化离散为 m ∗ n ∗ l m*n*l mnl个空间点,空间点的坐标为 ( x , y , z ) (x,y,z) (x,y,z),目标点与传感器节点间的距离为:
d ( n o d e i , p ) = ( x i − x ) 2 + ( y i − y ) 2 + ( z i − z ) 2 (3) d(node_i,p)=\sqrt{(x_i-x)^2+(y_i-y)^2 + (z_i-z)^2}\tag{3} d(nodei,p)=(xix)2+(yiy)2+(ziz)2 (3)
目标区域内点被传感器节点所覆盖的事件定义为 c i c_i ci。则该事件发生的概率 P c i P{c_i} Pci即为点 ( x , y , z ) (x,y,z) (x,y,z)被传感器节点 n o d e i node_i nodei所覆盖的概率:
P c o v ( x , y , z , n o d e i ) = { 1 , i f d ( n o d e i , p ) ≤ r 0 , e s l e (4) P_{cov}(x,y,z,node_i)=\begin{cases}1, if\,d(node_i,p)\leq r\\ 0,\, esle \end{cases}\tag{4} Pcov(x,y,z,nodei)={1,ifd(nodei,p)r0,esle(4)
我们将所有的传感器节点在目标监测环境中的区域覆盖率 C o v e r R a t i o CoverRatio CoverRatio定义为传感器节点集的覆盖面积与监测区域的面积之比,如公式所示:
C o v e r R a t i o = ∑ P c o v m ∗ n ∗ l (5) CoverRatio = \frac{\sum P_{cov}}{m*n*l}\tag{5} CoverRatio=mnlPcov(5)
那我们的最终目标就是找到一组节点使得覆盖率最大。

3.野狗算法

野狗算法原理请参考:https://blog.csdn.net/u011835903/article/details/122368818
野狗算法是寻找最小值。于是适应度函数定义为未覆盖率最小,即覆盖率最大。如下:
f u n = a r g m i n ( 1 − C o v e r R a t i o ) = a r g m i n ( 1 − ∑ P c o v m ∗ n ∗ l ) (6) fun = argmin(1 - CoverRatio) = argmin(1-\frac{\sum P_{cov}}{m*n*l}) \tag{6} fun=argmin(1CoverRatio)=argmin(1mnlPcov)(6)

4.实验参数设定

无线传感器覆盖参数设定如下:

%% 设定WNS覆盖参数,
%% 默认输入参数都是整数,如果想定义小数,请自行乘以系数变为整数再做转换。
%% 比如范围1*1,R=0.03可以转换为100*100,R=3;
%区域范围为AreaX*AreaY*AreaZ
AreaX = 100;
AreaY = 100;
AreaZ = 100;
N = 20 ;%覆盖节点数
R = 15;%通信半径

野狗算法参数如下:

%% 设定野狗优化参数
pop=30; % 种群数量
Max_iteration=30; %设定最大迭代次数
lb = ones(1,3*N);
ub = [AreaX.*ones(1,N),AreaY.*ones(1,N),AreaZ.*ones(1,N)];
dim = 3*N;%维度为3N,N个坐标点

5.算法结果

在这里插入图片描述
在这里插入图片描述

从结果来看,覆盖率在优化过程中不断上升。表明野狗算法对覆盖优化起到了优化的作用。

6.参考文献

[1] 史朝亚. 基于PSO算法无线传感器网络覆盖优化的研究[D]. 南京理工大学.

7.MATLAB代码

相关文章:

智能优化算法应用:基于野狗算法3D无线传感器网络(WSN)覆盖优化 - 附代码

智能优化算法应用:基于野狗算法3D无线传感器网络(WSN)覆盖优化 - 附代码 文章目录 智能优化算法应用:基于野狗算法3D无线传感器网络(WSN)覆盖优化 - 附代码1.无线传感网络节点模型2.覆盖数学模型及分析3.野狗算法4.实验参数设定5.算法结果6.参考文献7.MA…...

DC-8靶场

目录 DC-8靶场链接: 首先进行主机发现: sqlmap得到账号密码: 反弹shell: exim4提权: Flag: DC-8靶场链接: https://www.five86.com/downloads/DC-8.zip 下载后解压会有一个DC-8.ova文件…...

SQL Server 安装教程

安装数据库 1、启动SQL Server2014安装程序,运行setup.exe文件,打开”SQL Server安装中心“对话框,单击左侧 的导航区域中的”安装“选项卡。 2、选择”全新SQL Server独立安装或向现有安装添加功能“,启动SQL Server2014安装向导…...

快猫视频模板源码定制开发 苹果CMS 可打包成双端APP

苹果CMS快猫视频网站模板源码,可用于开发双端APP,后台支持自定义参数,包括会员升级页面、视频、演员、专题、收藏和会员系统等完整模块。还可以直接指定某个分类下的视频为免费专区,具备完善的卡密支付体系,无需人工管…...

【C++】理解string类的核心理念(实现一个自己的string类)

目录 一、引言 二、自我实现 1.成员变量的读写 2.构造与析构 3.迭代器 4.插入字符或字符串 尾插 中间插入 5.删除字符或子字符串 6.查找字符或子串 7.获取子串 三、完整代码 四、补充 一、引言 实现自己的 string 类是学习 C 语言和面向对象编程的一个好方法。通过…...

conda 虚拟环境使用

查看已有的虚拟环境 conda env list 创建虚拟环境且带python conda create -n test123 python3.7 激活虚拟环境(To activate this environment) conda activate test123 安装需要的包 python -m pip install opencv-python 退出虚拟环境(To…...

C# 使用MSTest进行单元测试

目录 写在前面 代码实现 执行结果 写在前面 MSTest是微软官方提供的.NET平台下的单元测试框架;可使用DataRow属性来指定数据,驱动测试用例所用到的值,连续对每个数据化进行运行测试,也可以使用DynamicData 属性来指定数据&…...

基于Java (spring-boot)的宠物管理系统

一、项目介绍 1、用户端功能: 首页:展示公告列表,宠物科普,介绍流浪宠物,热门活动。 宠物领养:用户搜索想要领养宠物,申请领养,查看自己领养的宠物。 宠物救助:用户能…...

基于博弈树的开源五子棋AI教程[1 位棋盘]

0 引子 常见的五子棋棋盘大小为15x15&#xff0c;最直观的表示就是一个二维数据。本文为了易于拓展一开始使用的是QVector<QVector>的数据&#xff0c;但是在分支因子为10的情况下只能搜索到4层左右&#xff0c;后面深度加深&#xff0c;搜索时间呈指数倍数增长。这种实…...

Java Catching and Handling Exceptions(二)

一、Try with resources语句 try with resources语句是声明一个或多个资源的try语句。资源是程序使用完后必须关闭的对象。try with resources语句确保在语句末尾关闭每个资源。任何实现java.lang.AutoCloseable的对象&#xff08;包括实现java.io.Closeable的所有对象&#x…...

【HarmonyOS开发】ArkTs关系型和非关系型数据库的存储封装

前面使用了首选项的存储方式&#xff0c;因此将其他的两种存储方式&#xff08;键值型数据库和关系型数据库&#xff09;也学习一下&#xff0c;简单记录一下&#xff0c;并进行封装&#xff0c;方便后续使用。 1、效果预览 2、使用条件 2.1 键值型数据库 键值型数据库实现数据…...

Latex编译出来的pdf文件缺少参考文献和交叉引用

参考文件通常需要在首次编译后&#xff0c;再次编译添加 依次执行下面的命令即可&#xff1a; xelatex main.tex main.tex为需要编译的主tex文件 biber mainxelatex main.tex 如果编译过程中遇到错误&#xff0c;请删除所有辅助文件和已打开的pdf文件后重试 辅助文件包括&#…...

sql_lab靶场搭建以及存在的一些问题

sql_lab靶场搭建问题 首先检查小皮版本 把小皮改到5.3.29版本如果没有可以直接点击更多版本进行选择安装 当版本不对时则会暴出这种错误 SETTING UP THE DATABASE SCHEMA AND POPULATING DATA IN TABLES: Fatal error: Uncaught Error: Call to undefined function mysql_co…...

Https接口调用问题

使用场景: 因为项目需要爬点接口数据, 接口是https, 在网上找的笔记整理了一下. 仅供参考 1. 调用Https的Get方法 /*** 只需要url** param url* return*/public static String doGetForHTML(String url) {return doGetForHTML(url, null);}/*** param url 请求地址* para…...

CSS自适应分辨率 amfe-flexible 和 postcss-pxtorem:大屏高宽自适应问题

前言 继上篇《CSS自适应分辨率 amfe-flexible 和 postcss-pxtorem》。 发现一个有趣的问题&#xff0c;文件 rem.js 中按照宽度设置自适应&#xff0c;适用于大多数页面&#xff0c;但当遇到大屏就不那么合适了。 问题 使用宽度&#xff0c;注意代码第2 和 4 行&#xff1a;…...

SQL面试题挑战01:打折日期交叉问题

目录 问题&#xff1a;SQL解答&#xff1a;第一种方式&#xff1a;第二种方式&#xff1a; 问题&#xff1a; 如下为某平台的商品促销数据&#xff0c;字段含义分别为品牌名称、打折开始日期、打折结束日期&#xff0c;现在要计算每个品牌的打折销售天数&#xff08;注意其中的…...

三大主流前端框架介绍及选型

在前端项目中&#xff0c;可以借助某些框架&#xff08;如React、Vue、Angular等&#xff09;来实现组件化开发&#xff0c;使代码更容易复用。此时&#xff0c;一个网页不再是由一个个独立的HTML、CSS和JavaScript文件组成&#xff0c;而是按照组件的思想将网页划分成一个个组…...

云原生消息流系统 Apache Pulsar 在腾讯云的大规模生产实践

导语 由 InfoQ 主办的 Qcon 全球软件开发者大会北京站上周已精彩落幕&#xff0c;腾讯云中间件团队的冉小龙参与了《云原生机构设计与音视频技术应用》专题&#xff0c;带来了以《云原生消息流系统 Apache Pulsar 在腾讯云的大规模生产实践》为主题的精彩演讲&#xff0c;在本…...

【LeetCode刷题】--245.最短单词距离III

245.最短单词距离III class Solution {public int shortestWordDistance(String[] wordsDict, String word1, String word2) {int len wordsDict.length;int ans len;if(word1.equals(word2)){int prev -1;for(int i 0;i<len;i){String word wordsDict[i];if(word.equa…...

数字化时代的智能支持:亚马逊云科技轻量应用服务器技术领先

轻量应用服务器是一种简化运维、门槛低的弹性服务器&#xff0c;它的"轻"主要体现在几个方面&#xff1a;开箱即用、应用优质、上手简洁、投入划算、运维简便以及稳定可靠。相较于普通的云服务器&#xff0c;轻量应用服务器简化了云服务的操作难度、使用和管理流程&a…...

Python爬虫实战:研究MechanicalSoup库相关技术

一、MechanicalSoup 库概述 1.1 库简介 MechanicalSoup 是一个 Python 库,专为自动化交互网站而设计。它结合了 requests 的 HTTP 请求能力和 BeautifulSoup 的 HTML 解析能力,提供了直观的 API,让我们可以像人类用户一样浏览网页、填写表单和提交请求。 1.2 主要功能特点…...

Flask RESTful 示例

目录 1. 环境准备2. 安装依赖3. 修改main.py4. 运行应用5. API使用示例获取所有任务获取单个任务创建新任务更新任务删除任务 中文乱码问题&#xff1a; 下面创建一个简单的Flask RESTful API示例。首先&#xff0c;我们需要创建环境&#xff0c;安装必要的依赖&#xff0c;然后…...

Linux链表操作全解析

Linux C语言链表深度解析与实战技巧 一、链表基础概念与内核链表优势1.1 为什么使用链表&#xff1f;1.2 Linux 内核链表与用户态链表的区别 二、内核链表结构与宏解析常用宏/函数 三、内核链表的优点四、用户态链表示例五、双向循环链表在内核中的实现优势5.1 插入效率5.2 安全…...

【人工智能】神经网络的优化器optimizer(二):Adagrad自适应学习率优化器

一.自适应梯度算法Adagrad概述 Adagrad&#xff08;Adaptive Gradient Algorithm&#xff09;是一种自适应学习率的优化算法&#xff0c;由Duchi等人在2011年提出。其核心思想是针对不同参数自动调整学习率&#xff0c;适合处理稀疏数据和不同参数梯度差异较大的场景。Adagrad通…...

Go 语言接口详解

Go 语言接口详解 核心概念 接口定义 在 Go 语言中&#xff0c;接口是一种抽象类型&#xff0c;它定义了一组方法的集合&#xff1a; // 定义接口 type Shape interface {Area() float64Perimeter() float64 } 接口实现 Go 接口的实现是隐式的&#xff1a; // 矩形结构体…...

从深圳崛起的“机器之眼”:赴港乐动机器人的万亿赛道赶考路

进入2025年以来&#xff0c;尽管围绕人形机器人、具身智能等机器人赛道的质疑声不断&#xff0c;但全球市场热度依然高涨&#xff0c;入局者持续增加。 以国内市场为例&#xff0c;天眼查专业版数据显示&#xff0c;截至5月底&#xff0c;我国现存在业、存续状态的机器人相关企…...

《用户共鸣指数(E)驱动品牌大模型种草:如何抢占大模型搜索结果情感高地》

在注意力分散、内容高度同质化的时代&#xff0c;情感连接已成为品牌破圈的关键通道。我们在服务大量品牌客户的过程中发现&#xff0c;消费者对内容的“有感”程度&#xff0c;正日益成为影响品牌传播效率与转化率的核心变量。在生成式AI驱动的内容生成与推荐环境中&#xff0…...

sqlserver 根据指定字符 解析拼接字符串

DECLARE LotNo NVARCHAR(50)A,B,C DECLARE xml XML ( SELECT <x> REPLACE(LotNo, ,, </x><x>) </x> ) DECLARE ErrorCode NVARCHAR(50) -- 提取 XML 中的值 SELECT value x.value(., VARCHAR(MAX))…...

C# 类和继承(抽象类)

抽象类 抽象类是指设计为被继承的类。抽象类只能被用作其他类的基类。 不能创建抽象类的实例。抽象类使用abstract修饰符声明。 抽象类可以包含抽象成员或普通的非抽象成员。抽象类的成员可以是抽象成员和普通带 实现的成员的任意组合。抽象类自己可以派生自另一个抽象类。例…...

c#开发AI模型对话

AI模型 前面已经介绍了一般AI模型本地部署&#xff0c;直接调用现成的模型数据。这里主要讲述讲接口集成到我们自己的程序中使用方式。 微软提供了ML.NET来开发和使用AI模型&#xff0c;但是目前国内可能使用不多&#xff0c;至少实践例子很少看见。开发训练模型就不介绍了&am…...