Observability:捕获 Elastic Agent 和 Elasticsearch 之间的延迟
在现代 IT 基础设施的动态环境中,高效的数据收集和分析至关重要。 Elastic Agent 是 Elastic Stack 的关键组件,通过促进将数据无缝摄取到 Elasticsearch 中,在此过程中发挥着至关重要的作用。 然而,显着影响此过程整体有效性的关键性能指标之一是延迟,即数据从 Elastic Agent 传输到 Elasticsearch 所需的时间。 在本文中,我们将深入研究捕获 Elastic Agent 和 Elasticsearch 之间的延迟时间。
有关如何设置 Agent 并采集数据,请阅读文章:
-
Observability:使用 Elastic Agent 来摄入日志及指标 - Elastic Stack 8.0
-
Observability:如何使用 Elastic Agents 把定制的日志摄入到 Elasticsearch 中
捕获延迟时间指南
利用处理器 (processors) 为所有事件合并代理 (agent) 时间戳。 处理器的目的是最小化导出事件中的字段或使用附加元数据对其进行扩充。 此操作发生在代理内,发生在日志进行解析之前。
让我们以系统 (System) 集成为例,以便更好地理解和计算延迟时间。

展开收集指标 (Collect metrics) 部分并打开 System process metrics -> Advance Options。 添加脚本处理器,它将为所有事件添加代理时间戳。
在上面点击 “Advanced options”
Script Processor:
- script:lang: javascriptsource: >function process(event) {event.Put("event.agent_timestamp",new Date());return event;}
如果你想记录每个事件的采集时间,你可以参考下面的脚步代码,并直接计算一个采集时间值。在下面的代码中,它使用运行时字段的方法来进行计算。如果数据比较多,性能还是有一些的影响。
我们必须在映射 metrics-system.process@custom 组件模板中添加 event.agent_timestamp 字段。
单击编辑图标,它将导航到组件模板编辑页面。 现在添加 event.agent_timestamp 字段作为日期类型并保存集成。
就是这样,我们已经将 event.agent_timestamp 字段添加到所有 System process metrics 事件中,我们可以在 Discover 中看到这一点。
现在我们可以使用运行时字段来计算延迟。 在 Kibana 中,转到 “Data Views” 部分,然后单击 “metrics-*” Data view。
创建一个新的运行时字段 event.agent_latency 并使用以下脚本设置延迟值。
通过提供包含以下内容的文档 ID 来预览延迟值 event.agent_timestamp 字段。
Script:
def agent_timestamp = doc["event.agent_timestamp"];
if(null != agent_timestamp){
long latency = doc['event.ingested'].value.toInstant().toEpochMilli() - agent_timestamp.value.toInstant().toEpochMilli();emit(latency);return;
}
emit(0);
该脚本将时间戳转换为自纪元以来的毫秒数并计算差值。
在 Discover 中,我们可以可视化 event.agent_latency 字段显示 Elastic Agent 和 Elasticsearch 之间的延迟时间。
减少 Elastic Agent 和 Elasticsearch 之间的延迟对于维护响应迅速且高效的数据分析环境至关重要。 通过了解影响延迟的因素并实施优化策略,组织可以确保其 Elastic Stack 发挥最佳性能,从而从其处理的数据中获得及时且可操作的见解。 定期监控、性能调整和及时了解最佳实践将有助于实现良好优化和低延迟的 Elastic Stack 部署。
在最新的 Elastic Stack 8.11 中,我们开始提供 ES|QL 管道查询语言。在查询时,我们可以更方便地生成所需要的字段。详情请阅读文章 “Elasticsearch:ES|QL 查询展示”。
相关文章:

Observability:捕获 Elastic Agent 和 Elasticsearch 之间的延迟
在现代 IT 基础设施的动态环境中,高效的数据收集和分析至关重要。 Elastic Agent 是 Elastic Stack 的关键组件,通过促进将数据无缝摄取到 Elasticsearch 中,在此过程中发挥着至关重要的作用。 然而,显着影响此过程整体有效性的关…...

Ubuntu 常用命令之 less 命令用法介绍
📑Linux/Ubuntu 常用命令归类整理 less命令是一个在Unix和Unix-like系统中用于查看文件内容的命令行工具。与more命令相比,less命令提供了更多的功能和灵活性,例如向前和向后滚动查看文件,搜索文本,查看长行等。 les…...
探索Node.js包管理器npm:介绍与使用指南
引言: 在现代软件开发中,包管理器已经成为了不可或缺的工具。它们简化了软件的安装、升级和管理过程,使得开发者能够更加高效地构建项目。而作为Node.js的官方包管理器,npm(Node Package Manager)无疑是最受…...

探讨APP自动化测试工具的重要性
随着移动应用市场的蓬勃发展,企业对于保证其移动应用质量和用户体验的需求日益迫切。在这一背景下,APP自动化测试工具正变得越来越重要,成为企业成功的关键组成部分。本文将探讨APP自动化测试工具对企业的重要性,并为您解析其在提…...
el-date-picker日期时间插件只允许选择年月日小时并做可选择范围限制(精确到小时的范围)
一、首先明确下这个需求 1、要求只能选择年月日时,不要分钟和秒 2、根据后台返回的开始时间和天数设置可选择的开始时间和结束时间范围(包含小时)比如后台返回的开始时间是2023-12-20 13:24:30,天数365天,那么我们需要限制当前可选日期为2023-12-20 14时(不能选小于13:2…...

在MongoDB中使用数组字段和子文档字段进行索引
本文主要介绍在MongoDB使用数组字段和子文档字段进行索引。 目录 MongoDB的高级索引一、索引数组字段二、索引子文档字段 MongoDB的高级索引 MongoDB是一个面向文档的NoSQL数据库,它提供了丰富的索引功能来加快查询性能。除了常规的单字段索引之外,Mong…...
<JavaEE> 网络编程 -- 网络编程和 Socket 套接字
目录 一、网络编程的概念 1)什么是网络编程? 2)网络编程中的基本概念 1> 收发端 2> 请求和响应 3> 客户端和服务端 二、Socket套接字 1)什么是“套接字”? 2)Socket套接字的概念 3&…...

【计算机系统结构实验】实验2 流水线中的冲突实验
2.1 实验目的 加深对计算机流水线基本概念的理解; 理解MIPS结构如何用5段流水线来实现,理解各段的功能和基本操作; 加深对结构冲突/数据冲突/控制冲突的理解; 进一步理解解决数据冲突的方法,掌握如何应用定向技术来…...

conda环境下执行conda命令提示无法识别解决方案
1 问题描述 win10环境命令行执行conda命令,报命令无法识别,错误信息如下: PS D:\code\cv> conda activate pt conda : 无法将“conda”项识别为 cmdlet、函数、脚本文件或可运行程序的名称。请检查名称的拼写,如果包括路径&a…...

链接未来:深入理解链表数据结构(二.c语言实现带头双向循环链表)
上篇文章简述讲解了链表的基本概念并且实现了无头单向不循环链表:链接未来:深入理解链表数据结构(一.c语言实现无头单向非循环链表)-CSDN博客 那今天接着给大家带来带头双向循环链表的实现: 文章目录 一.项目文件规划…...
论文笔记 | Nature 2023 FunSearch:利用大语言模型在数学科学领域探索新的发现
文章目录 一、前言二、主要内容三、总结🍉 CSDN 叶庭云:https://yetingyun.blog.csdn.net/ 一、前言 科学中有许多难以解决的问题,这些问题难以获得确切解答,但却相对容易进行验证。在数学和计算机科学领域,这类问题被称为 NP 完全优化问题(NP-complete optimization pr…...
JavaScript 对象和 JSON 字符串的区别
JavaScript 对象和 JSON 字符串是两种不同的数据表示形式,它们有以下区别: 语法格式:JavaScript 对象是 JavaScript 语言中的一种数据类型,使用花括号 {} 包裹,属性和值之间使用冒号 : 分隔,并且使用逗号 …...
基于 Flink SQL 和 Paimon 构建流式湖仓新方案
目录 1. 数据分析架构演进 2. Apache Paimon 3. Flink + Paimon 流式湖仓 Consumer 机制 Changelog 生成编辑...

MFC静态链接+libtiff静态链接提示LNK2005和LNK4098
编译报错 1>msvcrt.lib(ti_inst.obj) : error LNK2005: "private: __thiscall type_info::type_info(class type_info const &)" (??0type_infoAAEABV0Z) 已经在 libcmtd.lib(typinfo.obj) 中定义 1>msvcrt.lib(ti_inst.obj) : error LNK2005: "pr…...

桶装水送水小程序:提升服务质量的利器
随着移动互联网的发展,越来越多的消费者通过手机在线购物和订购商品。如果你是一名桶装水供应商,想要拓展线上业务,那么开发一个桶装水微信小程序将是一个明智的选择。本文将指导你从零开始开发一个桶装水微信小程序,让你轻松完成…...
深度学习在训练什么,什么是模型
深度学习是机器学习的一个分支,它主要通过使用称为神经网络的复杂结构来学习数据的表征。在深度学习中,"训练"和"模型"是两个核心概念。 训练 在深度学习中,"训练"是指用数据来训练一个神经网络。这个过程涉…...
Andorid 使用bp或者mk编译C文件生成so
在Aosp源码里编译C文件生成so 使用mk编译 文件夹列表 CMkDemo/Android.mk CMkDemo/cpp/SerialPort.c CMkDemo/cpp/SerialPort.hAndroid.mk 内容如下 LOCAL_PATH: $(call my-dir) include $(CLEAR_VARS)LOCAL_MODULE_TAGS : optional# All of the source files that we will…...

只更新软件,座椅为何能获得加热功能?——一文读懂OTA
2020年,特斯拉发布过一次OTA更新,车主可以通过这次系统更新获得座椅加热功能。当时,这则新闻震惊了车圈和所有车主,彼时的大家还没有把汽车当作可以“升级”的智能设备。 如今3年过去了,车主对各家车企的OTA升级早已见…...

EfficientDet:Scalable and Efficient Object Detection中文版 (BiFPN)
EfficientDet: Scalable and Efficient Object Detection EfficientDet:可扩展和高效的目标检测 摘要 模型效率在计算机视觉中变得越来越重要。本文系统地研究了用于目标检测的神经网络架构设计选择,并提出了几个关键的优化方法来提高效率。首先&…...

视频监控技术经历了哪些发展阶段?视频监控技术未来趋势展望
随着城市经济的发展和进步,视频监控也已经应用在人们衣食住行的方方面面,成为社会主体的一个重要组成部分。随着视频监控的重要性越来越凸显,大家对视频监控技术的发展也非常关注。今天我们来简单阐述一下,视频监控技术经历的几个…...
React 第五十五节 Router 中 useAsyncError的使用详解
前言 useAsyncError 是 React Router v6.4 引入的一个钩子,用于处理异步操作(如数据加载)中的错误。下面我将详细解释其用途并提供代码示例。 一、useAsyncError 用途 处理异步错误:捕获在 loader 或 action 中发生的异步错误替…...
蓝桥杯 2024 15届国赛 A组 儿童节快乐
P10576 [蓝桥杯 2024 国 A] 儿童节快乐 题目描述 五彩斑斓的气球在蓝天下悠然飘荡,轻快的音乐在耳边持续回荡,小朋友们手牵着手一同畅快欢笑。在这样一片安乐祥和的氛围下,六一来了。 今天是六一儿童节,小蓝老师为了让大家在节…...
多模态商品数据接口:融合图像、语音与文字的下一代商品详情体验
一、多模态商品数据接口的技术架构 (一)多模态数据融合引擎 跨模态语义对齐 通过Transformer架构实现图像、语音、文字的语义关联。例如,当用户上传一张“蓝色连衣裙”的图片时,接口可自动提取图像中的颜色(RGB值&…...

(二)原型模式
原型的功能是将一个已经存在的对象作为源目标,其余对象都是通过这个源目标创建。发挥复制的作用就是原型模式的核心思想。 一、源型模式的定义 原型模式是指第二次创建对象可以通过复制已经存在的原型对象来实现,忽略对象创建过程中的其它细节。 📌 核心特点: 避免重复初…...
Robots.txt 文件
什么是robots.txt? robots.txt 是一个位于网站根目录下的文本文件(如:https://example.com/robots.txt),它用于指导网络爬虫(如搜索引擎的蜘蛛程序)如何抓取该网站的内容。这个文件遵循 Robots…...
GitHub 趋势日报 (2025年06月08日)
📊 由 TrendForge 系统生成 | 🌐 https://trendforge.devlive.org/ 🌐 本日报中的项目描述已自动翻译为中文 📈 今日获星趋势图 今日获星趋势图 884 cognee 566 dify 414 HumanSystemOptimization 414 omni-tools 321 note-gen …...

pikachu靶场通关笔记22-1 SQL注入05-1-insert注入(报错法)
目录 一、SQL注入 二、insert注入 三、报错型注入 四、updatexml函数 五、源码审计 六、insert渗透实战 1、渗透准备 2、获取数据库名database 3、获取表名table 4、获取列名column 5、获取字段 本系列为通过《pikachu靶场通关笔记》的SQL注入关卡(共10关࿰…...
大语言模型(LLM)中的KV缓存压缩与动态稀疏注意力机制设计
随着大语言模型(LLM)参数规模的增长,推理阶段的内存占用和计算复杂度成为核心挑战。传统注意力机制的计算复杂度随序列长度呈二次方增长,而KV缓存的内存消耗可能高达数十GB(例如Llama2-7B处理100K token时需50GB内存&a…...

毫米波雷达基础理论(3D+4D)
3D、4D毫米波雷达基础知识及厂商选型 PreView : https://mp.weixin.qq.com/s/bQkju4r6med7I3TBGJI_bQ 1. FMCW毫米波雷达基础知识 主要参考博文: 一文入门汽车毫米波雷达基本原理 :https://mp.weixin.qq.com/s/_EN7A5lKcz2Eh8dLnjE19w 毫米波雷达基础…...

CVPR2025重磅突破:AnomalyAny框架实现单样本生成逼真异常数据,破解视觉检测瓶颈!
本文介绍了一种名为AnomalyAny的创新框架,该方法利用Stable Diffusion的强大生成能力,仅需单个正常样本和文本描述,即可生成逼真且多样化的异常样本,有效解决了视觉异常检测中异常样本稀缺的难题,为工业质检、医疗影像…...