Pooling方法总结(语音识别)
Pooling layer将变长的frame-level features转换为一个定长的向量。
1. Statistics Pooling
链接:http://danielpovey.com/files/2017_interspeech_embeddings.pdf
The default pooling method for x-vector is statistics pooling.
The statistics pooling layer calculates the mean vector µ as well as the second-order statistics as the standard deviation vector σ over frame-level features ht (t = 1, · · · , T ).
2. Attentive Statistics Pooling
链接:https://arxiv.org/pdf/1803.10963.pdf
在一段话中,往往某些帧的帧级特征比其他帧的特征更为独特重要,因此使用attention赋予每帧feature不同的权值。

其中f(.)代表非线性变换,如tanh or ReLU function。


最后将每帧特征加劝求和



3. Self-Attentive pooling
链接:https://danielpovey.com/files/2018_interspeech_xvector_attention.pdf
4. Self Multi-Head Attention pooling
论文:Multi-Resolution Multi-Head Attention in Deep Speaker Embedding | IEEE Conference Publication | IEEE Xplore
5. NetVLAD
论文:
https://arxiv.org/pdf/1902.10107.pdf
https://arxiv.org/pdf/1511.07247.pdf


更详细的解释参考:从VLAD到NetVLAD,再到NeXtVlad - 知乎
6. Learnable Dictionary Encoding (LDE)
论文:https://arxiv.org/pdf/1804.05160.pdf
we introduce two groups of learnable parameters. One is the dictionary component center, noted as µ = {µ1, µ2 · · · µc}. The other one is assigned weights, noted as w.
where the smoothing factor for each dictionary center
is learnable.


7. Attentive Bilinear Pooling (ABP) - Interspeech 2020
论文:https://www.isca-speech.org/archive/Interspeech_2020/pdfs/1922.pdf
Let be the frame-level feature map captured by the hidden layer below the self-attention layer, where L and D are the number of frames and feature dimension respectively. Then the attention map
can be obtained by feeding H into a 1×1 convolutional layer followed by softmax non-linear activation, where K is the number of attention heads. The 1st-order and 2nd-order attentive statistics of H, denoted by µ and
, can be computed similar as crosslayer bilinear pooling, which is

where T1(x) is the operation of reshaping x into a vector, and T2(x) includes a signed square-root step and a L2- normalization step. The output of ABP is the concatenation of µ and
8. Short-time Spectral Pooling (STSP) - ICASSP 2021
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9414094&tag=1
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9414094&tag=1From a Fourier perspective, statistics pooling only exploits the DC (zero-frequency) components in the spectral domain, whereas STSP incorporates more spectral components besides the DC ones during aggregation and is able to retain richer speaker information.
1. 将卷积层提取到的特征做STFT(Short Time Fourier Transorm),每一个channel得到一个二维频谱图。
2. 计算averaged spectral array

3. 计算second-order spectral statistics

4. 将两个特征进行拼接(C is the number of channels)


9. Multi-head attentive STSP (IEEE TRANS. ON AUDIO, SPEECH, AND LANGUAGE PROCESSING 2022)
One limitation of STSP is that the brute average of the spectrograms along the temporal axis ignores the importance of individual windowed segments when computing the spectral representations. In other words, all segments in a specific spectrogram were treated with equal importance.

相关文章:
Pooling方法总结(语音识别)
Pooling layer将变长的frame-level features转换为一个定长的向量。 1. Statistics Pooling 链接:http://danielpovey.com/files/2017_interspeech_embeddings.pdf The default pooling method for x-vector is statistics pooling. The statistics pooling laye…...
Java可变参数(学习推荐版,通俗易懂)
定义 可变参数本质还是一个数组 示例代码 注意事项 1.形参列表中,可变参数只能有一个 2.可变参数必须放在形参列表的最后面 注意是最后面。 name也可以为int类型...
异步编程Promise
文章目录 前言一、关于 Promise 的理解与使用1.相关知识补充区别实例对象和函数对象同步回调异步回调Js中的错误(error)和错误处理 2.promise是什么 二、Promise 原理三、Promise 封装 Ajax四、async 与 await总结 前言 在项目中,promise的使…...
Centos上的默认文本编辑器vi的操作方法积累
打开一个文本后,常见的操作方法积累如下: 001-进入或退出插入模式的方法 按下 i 进入插入模式。 按下 Esc 退出插入模式。 002-进入命令模式的方法: 按下 Esc 退出插入模式,然后输入冒号:进入命令模式。 003-退出vi编辑器的方…...
海康rtsp拉流,rtmp推流,nginx部署转flv集成
海康rtsp拉流,rtmp推流,nginx部署转flv集成 项目实际使用并测试经正式使用无问题,有问题欢迎评论留言 核心后台java代码: try {// FFmpeg命令String command "ffmpeg -re -i my_video.mp4 -c copy -f flv rtmp://localho…...
【Python百宝箱】时序之美:Python 时间序列探秘与创新
时光漫游:Python 时间序列分析全指南 前言 在数字化时代,时间序列数据扮演着关键的角色,从金融到气象再到生产制造。本文将引导你穿越Python丰富的时间序列分析工具,探索从基础统计到机器学习和深度学习的各个层面。无论你是初学…...
flutter开发实战-第一帧布局完成回调实现
flutter开发实战-第一帧布局完成回调实现 在开发中,我们有时候需要在第一帧布局完成后调用一些相关的方法。这里记录一下是实现过程。 Flutter中有多种不同的Binding,每种Binding都负责不同的功能。下面是Flutter中常见的Binding: 这里简单…...
Windows11编译VTM源码生成Visual Studio 工程
VTM介绍 VTM作为H266/VVC标准的官方参考软件,一直用作H266/VVC标准的研究和迭代。关于H2666/VVC标准的介绍、代码、提案、文档等,可以参考H266/VVC编码标准介绍。 官方代码地址: https://vcgit.hhi.fraunhofer.de/jvet/VVCSoftware_VTM&…...
[数据结构进阶 C++] 二叉搜索树(BinarySearchTree)的模拟实现
文章目录 1、二叉搜索树1.1 二叉搜索数的概念1.2 二叉搜索树的操作1.2.1 二叉搜索树的查找1.2.2 二叉搜索树的插入1.2.3 二叉搜索树的删除 2、二叉搜索树的应用2.1 K模型2.2 KV模型 3、二叉搜索树的性能分析4、K模型与KV模型完整代码4.1 二叉搜索树的模拟实现(K模型…...
PostGIS学习教程十四:更多的空间连接
PostGIS学习教程十四:更多的空间连接 在上一节中,我们看到了ST_Centroid(geometry)和ST_Union([geometry])函数,以及一些简单的示例。在本节中,我们将用它们做一些更详细的事情。 提示:写完文章后,目录可以…...
【爬虫软件】孔夫子二手书采集
项目演示 孔网爬取图书信息 目录结构 [ |-- api-ms-win-core-synch-l1-2-0.dll, |-- api-ms-win-core-sysinfo-l1-1-0.dll, |-- api-ms-win-core-timezone-l1-1-0.dll, |-- api-ms-win-core-util-l1-1-0.dll, |-- api-ms-win-crt-conio-l1-1-0.dll, |-- api…...
P8736 [蓝桥杯 2020 国 B] 游园安排
题目描述 L \mathrm{L} L 星球游乐园非常有趣,吸引着各个星球的游客前来游玩。小蓝是 L \mathrm{L} L 星球 游乐园的管理员。 为了更好的管理游乐园,游乐园要求所有的游客提前预约,小蓝能看到系统上所有预约游客的名字。每个游客的名字由一…...
初识Docker-什么是docker
Docker是一个快速交付应用、运行应用的技术 目录 一、Docker 二、运用场景 一、什么是Docker?它的作用是什么? Docker如何解决大型项目依赖关系复杂,不同组件依赖的兼容性问题? Docker允许开发中将应用、依赖、函数库、配置一起打包&…...
maven的pom.xml设置本地仓库
配置 在Maven项目中,您可以在pom.xml文件中配置本地仓库的路径。在pom.xml文件中,您可以添加以下配置来指定本地仓库的路径: <project>...<repositories><repository><id>local-repo</id><url>file://…...
Qt获取屏幕DPI缩放比
获取屏幕缩放比 网上很多代码是用 logicalDotsPerInch 除以 96 来获取屏幕缩放比: // Windows 除以 96,macOS 除以 72 qreal factor window->screen()->logicalDotsPerInch() / 96.0; 当使能了缩放适配后,logicalDotsPerInch 值就不…...
Spring MVC控制层框架
三、Spring MVC控制层框架 目录 一、SpringMVC简介和体验 1. 介绍2. 主要作用3. 核心组件和调用流程理解4. 快速体验 二、SpringMVC接收数据 1. 访问路径设置2. 接收参数(重点) 2.1 param 和 json参数比较2.2 param参数接收2.3 路径 参数接收2.4 json参…...
vmware安装银河麒麟V10高级服务器操作系统
vmware安装银河麒麟V10高级服务器操作系统 1、下载银河麒麟V10镜像2、VMware安装银河麒麟V10高级服务器操作系统2.1、新建虚拟机2.2、安装虚拟机 3、配置银河麒麟V10高级服务器操作系统3.1、安装vmware tools3.2、配置静态IP地址 和 dns3.3、查看磁盘分区3.4、查看系统版本 1、…...
掌握Jenknis基础概念
目录 任务(Jobs) 构建(Builds) 触发器(Triggers) 构建环境(Build Environment): 插件(Plugins): 参数化构建(Paramet…...
AWS 知识二:AWS同一个VPC下的ubuntu实例通过ldapsearch命令查询目录用户信息
前言: 前提:需要完成我的AWS 知识一创建一个成功运行的目录。 主要两个重要:1.本地windows如何通过SSH的方式连接到Ubuntu实例 2.ldapsearch命令的构成 一 ,启动一个新的Ubuntu实例 1.创建一个ubuntu实例 具体创建实例步骤我就不…...
Ubuntu 常用命令之 fdisk 命令用法介绍
📑Linux/Ubuntu 常用命令归类整理 fdisk 是一个用于处理磁盘分区的命令行工具,它在 Linux 系统中广泛使用。fdisk 命令可以创建、删除、更改、复制和显示硬盘分区,以及更改硬盘的分区 ID。 fdisk 命令的常用参数如下 -l:列出所…...
龙虎榜——20250610
上证指数放量收阴线,个股多数下跌,盘中受消息影响大幅波动。 深证指数放量收阴线形成顶分型,指数短线有调整的需求,大概需要一两天。 2025年6月10日龙虎榜行业方向分析 1. 金融科技 代表标的:御银股份、雄帝科技 驱动…...
地震勘探——干扰波识别、井中地震时距曲线特点
目录 干扰波识别反射波地震勘探的干扰波 井中地震时距曲线特点 干扰波识别 有效波:可以用来解决所提出的地质任务的波;干扰波:所有妨碍辨认、追踪有效波的其他波。 地震勘探中,有效波和干扰波是相对的。例如,在反射波…...
day52 ResNet18 CBAM
在深度学习的旅程中,我们不断探索如何提升模型的性能。今天,我将分享我在 ResNet18 模型中插入 CBAM(Convolutional Block Attention Module)模块,并采用分阶段微调策略的实践过程。通过这个过程,我不仅提升…...
数据链路层的主要功能是什么
数据链路层(OSI模型第2层)的核心功能是在相邻网络节点(如交换机、主机)间提供可靠的数据帧传输服务,主要职责包括: 🔑 核心功能详解: 帧封装与解封装 封装: 将网络层下发…...
SpringCloudGateway 自定义局部过滤器
场景: 将所有请求转化为同一路径请求(方便穿网配置)在请求头内标识原来路径,然后在将请求分发给不同服务 AllToOneGatewayFilterFactory import lombok.Getter; import lombok.Setter; import lombok.extern.slf4j.Slf4j; impor…...
AI书签管理工具开发全记录(十九):嵌入资源处理
1.前言 📝 在上一篇文章中,我们完成了书签的导入导出功能。本篇文章我们研究如何处理嵌入资源,方便后续将资源打包到一个可执行文件中。 2.embed介绍 🎯 Go 1.16 引入了革命性的 embed 包,彻底改变了静态资源管理的…...
Mac下Android Studio扫描根目录卡死问题记录
环境信息 操作系统: macOS 15.5 (Apple M2芯片)Android Studio版本: Meerkat Feature Drop | 2024.3.2 Patch 1 (Build #AI-243.26053.27.2432.13536105, 2025年5月22日构建) 问题现象 在项目开发过程中,提示一个依赖外部头文件的cpp源文件需要同步,点…...
Linux 内存管理实战精讲:核心原理与面试常考点全解析
Linux 内存管理实战精讲:核心原理与面试常考点全解析 Linux 内核内存管理是系统设计中最复杂但也最核心的模块之一。它不仅支撑着虚拟内存机制、物理内存分配、进程隔离与资源复用,还直接决定系统运行的性能与稳定性。无论你是嵌入式开发者、内核调试工…...
AirSim/Cosys-AirSim 游戏开发(四)外部固定位置监控相机
这个博客介绍了如何通过 settings.json 文件添加一个无人机外的 固定位置监控相机,因为在使用过程中发现 Airsim 对外部监控相机的描述模糊,而 Cosys-Airsim 在官方文档中没有提供外部监控相机设置,最后在源码示例中找到了,所以感…...
0x-3-Oracle 23 ai-sqlcl 25.1 集成安装-配置和优化
是不是受够了安装了oracle database之后sqlplus的简陋,无法删除无法上下翻页的苦恼。 可以安装readline和rlwrap插件的话,配置.bahs_profile后也能解决上下翻页这些,但是很多生产环境无法安装rpm包。 oracle提供了sqlcl免费许可,…...

