[THUPC 2024 初赛] 二进制 (树状数组单点删除+单点查询)(双堆模拟set)
题解
题目本身不难想
首先注意到所有查询的序列长度都是小于logn级别的
我们可以枚举序列长度len,然后用类似滑动窗口的方法,一次性预处理出每种字串的所有出现位置,也就是开N个set去维护所有的位置。预处理会进行O(logn)轮,每次需要O(n*logn)的时间复杂度初始化set并计算位置。总共复杂度O(nlog^2n),看一下时间限制6s,感觉可以过23333。
删除操作可以直接暴力,直接从每种字串的位置集合中删除所有被影响到的位置,然后再把删除后字符串合并产生的新的子串加入到set中,过程中需要支持O(logn)的单点删除和单点查询。
在set中,删除起始点在L~R之间子串信息,再插入起始点在L到x-1的新构成的子串的信息
删除操作最多O(n/logn)次,每次直接暴力就是O(log^2n),总共复杂度O(nlogn)
接下来就是一些小问题,如何维护单点删除、单点查询的序列呢?
首先我们肯定不会去真正的移动序列,保留原始的输入01序列
可以想到用set去维护当前存在的每个坐标,但是支持查询第k个坐标的话得手写平衡树
也可以想到用线段树或者树状数组维护每个位置的存在信息,在线段树或者树状数组上二分来查询删除后的序列中的第k个坐标的真实位置。
这里使用树状数组
树状数组二分类似于倍增查询LCA的思想,十分易懂。
然后我们迅速写完整个内容,交一发,发现TLE了
看一下复杂度,发现瓶颈在于预处理,于是我们把初始化中对每个位置都进行树状数组二分,替换为直接使用当前位置存在信息数组进行处理,这样预处理中计算坐标的部分就变成O(n)了
但是仍然TLE了
现在瓶颈仍然是预处理,如果C++支持对有序序列O(n)建立set就好了
后来看了洛谷上题解的方法,才知道可以用两个优先队列来模拟set
由于我们只需要维护集合中的最小值以及集合的元素个数
使用两个堆,一个维护插入的内容,另一个维护删除的内容
当查询个数时,两个堆的大小相减即可。当查询最小值时,如果“删除堆”中的最小值与“插入堆”中的最小值相等,就两个一起pop掉,直到找到第一个“插入堆”中存在,但“删除堆”中不存在的元素即可。
(其实也可以用两个vector来模拟,因为对于每种子串,查询的次数只有一次,所以可以大胆排序再查询,这样初始化时间复杂度也是O(nlogn),查询删除子串的总时间复杂度是最坏O(nlog^2n)不过似乎也能过,因为sort在大部分都有序的情况下还是很快的)
改完之后,从6.18s变成了1.17s,发生了质的飞跃23333
有人可能会问,优先队列插入不也是O(logn)的吗,为什么会比set快这么多,因为预处理的过程中插入集合的内容是顺序的,根据小根堆的实现,只有当自己比父亲值小时,才会发生交换,所以在预处理建立小根堆的过程中是O(n)的,这样预处理的总复杂度就变成了O(nlogn),删除方面在理论上最坏时间复杂度也是O(nlog^2n)(假设所有的位置都集中在一种子串上,并且“删除堆”和“插入堆”差不多大)
代码:
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<set>
#include<queue>
using namespace std;
#define N 1000005
#define LOG 20
int n, n_real, now;
char ss[N];
// 树状数组维护单点删除与单点查询的序列
// 实际坐标->逻辑坐标(删除后的坐标) getsum
// 逻辑坐标->实际坐标 query 树状数组二分
int tra[N];
int getsum(int x)
{int ret=0;for(;x;x-=x&-x) ret+=tra[x];return ret;
}
void update(int x,int k)
{for(;x<=n;x+=x&-x)tra[x]+=k;
}
int query(int k)// 查询删除后序列的第k位置的实际坐标
{int ans=0,sum=0;for(int i=LOG;i>=0;i--){if(ans+(1<<i)<=n && sum+tra[ans+(1<<i)]<k){sum+=tra[ans+(1<<i)];ans+=(1<<i);}}return ans+1;
}
// a是原始数据,tmp是删除后的数组,b表示当前位是否存在(树状数组建立在b上)
bool a[N],tmp[N],b[N];
int pos[N];
void cal_tmp_all()
{int cnt=0;for(int i=1;i<=n;i++){if(b[i]){pos[++cnt]=i;tmp[cnt]=a[i];}}
}
void cal_tmp(int l,int r)
{l=max(1,l);r=min(r,n_real);for(int i=l;i<=r;i++){pos[i]=query(i);tmp[i]=a[pos[i]];}
}
priority_queue<int,vector<int>,greater<int> > S[N],D[N];
//set<int> S[N];
//set<int>::iterator it;
// 将起始点在l r之间,长度为len的数据加入到set或者从set中删除
void update_set(int l,int r,int len,bool flg)
{r=min(n_real,r+len-1);int lim_l= max(now,1<<(len-1)), lim_r= min(n,(1<<len)-1);int mask=(1<<len)-1;int tmp_value=0;for(int i=l;i<=r;i++){tmp_value=((tmp_value<<1)&mask)|tmp[i];if(i-l+1 >= len && tmp_value>=lim_l && tmp_value<=lim_r){if(flg)S[tmp_value].push(pos[i-len+1]);elseD[tmp_value].push(pos[i-len+1]);}}
}
int main()
{scanf("%d",&n);n_real=n;scanf("%s",ss+1);for(int i=1;i<=n;i++){a[i]=int(ss[i]-'0');update(i,1);b[i]=1;}now=1;for(int len=1;n>>(len-1);len++){cal_tmp_all();update_set(1,n_real,len,1);//printf("start len:%d\n",len);for(;now<(1<<len);now++){//printf("now:%d\n",now);if(now>n)return 0;int siz = (int)S[now].size()-(int)D[now].size();if(!siz){printf("-1 0\n");continue;}while(!S[now].empty()&&!D[now].empty() && S[now].top()==D[now].top()){S[now].pop();D[now].pop();}int x=getsum(S[now].top());printf("%d %d\n",x,siz);int l=max(1,x-len+1),r=min(n_real,x+len-1);// 删除受影响的结果cal_tmp(l,r+len-1);update_set(l,r,len,0);// 删除对应的01序列for(int i=x;i<=r;i++){update(pos[i],-1);b[pos[i]]=0;}n_real-=len;// 添加新产生的序列结果cal_tmp(l,x-1+len-1);update_set(l,x-1,len,1);while(!S[now].empty())S[now].pop();while(!D[now].empty())D[now].pop();}}
}
相关文章:

[THUPC 2024 初赛] 二进制 (树状数组单点删除+单点查询)(双堆模拟set)
题解 题目本身不难想 首先注意到所有查询的序列长度都是小于logn级别的 我们可以枚举序列长度len,然后用类似滑动窗口的方法,一次性预处理出每种字串的所有出现位置,也就是开N个set去维护所有的位置。预处理会进行O(logn)轮,每…...

机器学习算法(11)——集成技术(Boosting——梯度提升)
一、说明 在在这篇文章中,我们学习了另一种称为梯度增强的集成技术。这是我在机器学习算法集成技术文章系列中与bagging一起介绍的一种增强技术。我还讨论了随机森林和 AdaBoost 算法。但在这里我们讨论的是梯度提升,在我们深入研究梯度提升之前…...
使用GBASE南大通用负载均衡连接池
若要使用负载均衡连接池功能,需要在连接串中配置相关的关键字。有关更详细的关键字信息在 GBASE南大通用 连接参数表‛中介绍。假设存在如下场景: 现有集群中存在 4 个节点: 192.168.9.173, 192.168.9.174, 192.168.9.175, 192.168.9.17…...

Flink 数据序列化
为 Flink 量身定制的序列化框架 大家都知道现在大数据生态非常火,大多数技术组件都是运行在JVM上的,Flink也是运行在JVM上,基于JVM的数据分析引擎都需要将大量的数据存储在内存中,这就不得不面临JVM的一些问题,比如Ja…...

【并发设计模式】聊聊两阶段终止模式如何优雅终止线程
在软件设计中,抽象出了23种设计模式,用以解决对象的创建、组合、使用三种场景。在并发编程中,针对线程的操作,也抽象出对应的并发设计模式。 两阶段终止模式- 优雅停止线程避免共享的设计模式- 只读、Copy-on-write、Thread-Spec…...

Java实现非对称加密【详解】
Java实现非对称加密 1. 简介2. 非对称加密算法--DH(密钥交换)3. 非对称加密算法--RSA非对称加密算法--EIGamal5. 总结6 案例6.1 案例16.2 案例2 1. 简介 公开密钥密码学(英语:Public-key cryptography)也称非对称式密…...

simulinkveristandlabview联合仿真——模型导入搭建人机界面
目录 1.软件版本 2.搭建simulink仿真模型 编译错误 3.导入veristand并建立工程 4.veristand导入labview labview显示veristand工程数据 labview设置veristand工程数据 运行labview工程 1.软件版本 matlab2020a,veristand2020 R4,labview2020 SP…...

k8s中Helm工具实践
k8s中Helm工具实践 1)安装redis-cluster 先搭建一个NFS的SC(只需要SC,不需要pvc),具体步骤此文档不再提供,请参考前面相关章节。 下载redis-cluster的chart包 helm pull bitnami/redis-cluster --untar…...

推荐算法架构7:特征工程(吊打面试官,史上最全!)
系列文章,请多关注 推荐算法架构1:召回 推荐算法架构2:粗排 推荐算法架构3:精排 推荐算法架构4:重排 推荐算法架构5:全链路专项优化 推荐算法架构6:数据样本 推荐算法架构7:特…...

Web前端 ---- 【Vue】vue路由守卫(全局前置路由守卫、全局后置路由守卫、局部路由path守卫、局部路由component守卫)
目录 前言 全局前置路由守卫 全局后置路由守卫 局部路由守卫之path守卫 局部路由守卫之component守卫 前言 本文介绍Vue2最后的知识点,关于vue的路由守卫。也就是鉴权,不是所有的组件任何人都可以访问到的,需要权限,而根据权限…...
uniapp点击tabbar之前做判断
在UniApp中,可以通过监听 tabBar 的 click 事件来在点击 tabBar 前做判断。具体步骤如下: 在 pages.json 文件中配置 tabBar,例如: {"pages":[{"path":"pages/home/home","name":"h…...

DLLNotFoundException:xxx tolua... 错误打印
DLLNotFoundException:xxx tolua... 错误打印 一、DLLNotFoundException介绍二、Plugins文件夹文件目录结构如下: 三、Plugins中的Android文件夹四、Plugins中的IOS文件夹这里不说了没测试过不过原理应该也是选择对应的平台即可五、Plugins中的x86和X86_64文件夹 一…...

Python量化投资——金融数据最佳实践: 使用qteasy+tushare搭建本地金融数据仓库并定期批量更新【附源码】
用qteasytushare实现金融数据本地化存储及访问 目的什么是qteasy什么是tushare为什么要本地化使用qteasy创建本地数据仓库qteasy支持的几种本地化仓库类型配置本地数据仓库配置tushare 的API token 配置本地数据源 —— 用MySQL数据库作为本地数据源下载金融历史数据 数据的定期…...
【投稿】北海 - Rust与面向对象(二)
模板方法 Rust提供了trait,类似于面向对象的接口,不同的是,将传统面向对象的虚函数表从对象中分离出来,trait仍然是一个函数表,只不过是独立的,它的参数self指针可以指向任何实现了该trait的结构。 从对象中…...

HarmonyOS构建第一个ArkTS应用(FA模型)
构建第一个ArkTS应用(FA模型) 创建ArkTS工程 若首次打开DevEco Studio,请点击Create Project创建工程。如果已经打开了一个工程,请在菜单栏选择File > New > Create Project来创建一个新工程。 选择Application应用开发&a…...

阿里云 ARMS 应用监控重磅支持 Java 21
作者:牧思 & 山猎 前言 今年的 9 月 19 日,作为最新的 LTS (Long Term Support) Java 版本,Java 21 正式 GA,带来了不少重量级的更新,详情请参考 The Arrival of Java 21 [ 1] 。虽然目前 Java 11 和 Java 17 都…...
C++ 类的析构函数和构造函数
构造函数 类的构造函数是类的一种特殊的成员函数,它会在每次创建类的新对象时执行。主要用来在创建对象时初始化对象即为对象成员变量赋初始值。 构造函数的名称与类的名称是完全相同的,并且不会返回任何类型,也不会返回 void。构造函数可用…...

STM32——CAN协议
文章目录 一.CAN协议的基本特点1.1 特点1.2 电平标准1.3 基本的五个帧1.4 数据帧 二.数据帧解析2.1 帧起始和仲裁段2.2 控制段2.3 数据段和CRC段2.4 ACK段和帧结束 三.总线仲裁四.位时序五.STM32CAN控制器原理与配置5.1 STM32CAN控制器介绍5.2 CAN的模式5.3 CAN框图 六 手册寄存…...

数据结构-如何巧妙实现一个栈?逐步解析与代码示例
文章目录 引言1.栈的基本概念2.选择数组还是链表?3. 定义栈结构4.初始化栈5.压栈操作6.弹栈操作7.查看栈顶和判断栈空9.销毁栈操作10.测试并且打印栈内容栈的实际应用结论 引言 栈是一种基本但强大的数据结构,它在许多算法和系统功能中扮演着关键角色。…...
web前端之拖拽API、vue3实现图片上传拖拽排序、拖放、投掷、复制、若依、vuedraggable
MENU vue2html5原生dom原生JavaScript实现跨区域拖放vue2实现跨区域拖放vue2mousedown实现全屏拖动,全屏投掷vue3element-plusvuedraggable实现图片上传拖拽排序vue2transition-group实现拖动排序原生拖拽排序 vue2html5原生dom原生JavaScript实现跨区域拖放 关键代…...

python打卡day49
知识点回顾: 通道注意力模块复习空间注意力模块CBAM的定义 作业:尝试对今天的模型检查参数数目,并用tensorboard查看训练过程 import torch import torch.nn as nn# 定义通道注意力 class ChannelAttention(nn.Module):def __init__(self,…...
ffmpeg(四):滤镜命令
FFmpeg 的滤镜命令是用于音视频处理中的强大工具,可以完成剪裁、缩放、加水印、调色、合成、旋转、模糊、叠加字幕等复杂的操作。其核心语法格式一般如下: ffmpeg -i input.mp4 -vf "滤镜参数" output.mp4或者带音频滤镜: ffmpeg…...

高危文件识别的常用算法:原理、应用与企业场景
高危文件识别的常用算法:原理、应用与企业场景 高危文件识别旨在检测可能导致安全威胁的文件,如包含恶意代码、敏感数据或欺诈内容的文档,在企业协同办公环境中(如Teams、Google Workspace)尤为重要。结合大模型技术&…...

dify打造数据可视化图表
一、概述 在日常工作和学习中,我们经常需要和数据打交道。无论是分析报告、项目展示,还是简单的数据洞察,一个清晰直观的图表,往往能胜过千言万语。 一款能让数据可视化变得超级简单的 MCP Server,由蚂蚁集团 AntV 团队…...
docker 部署发现spring.profiles.active 问题
报错: org.springframework.boot.context.config.InvalidConfigDataPropertyException: Property spring.profiles.active imported from location class path resource [application-test.yml] is invalid in a profile specific resource [origin: class path re…...

Unsafe Fileupload篇补充-木马的详细教程与木马分享(中国蚁剑方式)
在之前的皮卡丘靶场第九期Unsafe Fileupload篇中我们学习了木马的原理并且学了一个简单的木马文件 本期内容是为了更好的为大家解释木马(服务器方面的)的原理,连接,以及各种木马及连接工具的分享 文件木马:https://w…...
Redis:现代应用开发的高效内存数据存储利器
一、Redis的起源与发展 Redis最初由意大利程序员Salvatore Sanfilippo在2009年开发,其初衷是为了满足他自己的一个项目需求,即需要一个高性能的键值存储系统来解决传统数据库在高并发场景下的性能瓶颈。随着项目的开源,Redis凭借其简单易用、…...

2.3 物理层设备
在这个视频中,我们要学习工作在物理层的两种网络设备,分别是中继器和集线器。首先来看中继器。在计算机网络中两个节点之间,需要通过物理传输媒体或者说物理传输介质进行连接。像同轴电缆、双绞线就是典型的传输介质,假设A节点要给…...
多元隐函数 偏导公式
我们来推导隐函数 z z ( x , y ) z z(x, y) zz(x,y) 的偏导公式,给定一个隐函数关系: F ( x , y , z ( x , y ) ) 0 F(x, y, z(x, y)) 0 F(x,y,z(x,y))0 🧠 目标: 求 ∂ z ∂ x \frac{\partial z}{\partial x} ∂x∂z、 …...
React核心概念:State是什么?如何用useState管理组件自己的数据?
系列回顾: 在上一篇《React入门第一步》中,我们已经成功创建并运行了第一个React项目。我们学会了用Vite初始化项目,并修改了App.jsx组件,让页面显示出我们想要的文字。但是,那个页面是“死”的,它只是静态…...