向量投影:如何将一个向量投影到矩阵的行向量生成子空间?
向量投影:如何将一个向量投影到矩阵的行向量生成子空间?
前言
本问题是在学习Rosen梯度投影优化方法的时候遇到的问题,主要是对于正交投影矩阵(NT(NNT)-1N)的不理解,因此经过查阅资料,学习了关于向量投影的知识,记录如下。
首先需要了解 子空间和子空间的正交补。相关知识可以查阅本人的另外一篇笔记,核和值域的关系:什么是矩阵的秩?,这篇笔记中是以矩阵列向量的生成子空间为例展开的。
核心公式:
- R ( A H ) ∩ N ( A ) = { 0 } R(A^H) \cap N(A)=\{0\} R(AH)∩N(A)={0}
- R ( A H ) ⊕ N ( A ) = C m R(A^H) \oplus N(A) = C^m R(AH)⊕N(A)=Cm
其中R(AH)是A的行向量的生成子空间, R ( A H ) = { y ∈ R n ∣ y = A H x , x ∈ C m } R(A^H)=\{y\in R^n|y=A^Hx,x\in C^m\} R(AH)={y∈Rn∣y=AHx,x∈Cm}。
N(A)是A的核子空间, N ( A ) = { x ∣ A x = 0 , x ∈ R n } N(A)=\{x|Ax=0,x\in R^n\} N(A)={x∣Ax=0,x∈Rn}。
正文
所谓向量投影,本质上是期望将Rn空间中的任意一个n维向量,分解称为y1+y2,其中y1属于R(AH),y2属于N(A)。
1、投影矩阵
投影是一种线性变换,要求两次投影变换的结果等于一次投影变换的结果。在信号处理领域当中,一个信号经过两次滤波器和经过一次滤波器的结果是相等的,那么这个滤波器在数学上可抽象成一个投影矩阵。
写成数学公式: P 2 x = P P x = P x P^2x=PPx=Px P2x=PPx=Px。因此要求投影矩阵P是一个方阵。
可证明:R§=R(PH)。通常情况下一个方阵的行空间和列空间是不相同的,二者仅仅是同构关系,即维数相同。
即: R ( P ) ⊕ N ( P ) = C n R(P) \oplus N(P) = C^n R(P)⊕N(P)=Cn
投影分为正交投影和斜投影。二者的区别在于,正交投影矩阵P,R§的正交补=N§,等价于,R§和N§正交。而斜投影矩阵则没有这个性质。
可证明:一个投影矩阵P,是正交投影矩阵的充要条件是:P=PH
举一个简单的例子。
R2空间,向x轴的正交投影P,只能是取一个二维向量的横坐标。R§就是x轴,N§就是y轴,x轴的正交补是y轴。
R2空间,向x轴的斜投影Q,比如是指向东偏南45度➘方向的的投影。R(Q)就是x轴,x轴的正交补是y轴,而N(Q)是沿着东偏南45度➘方向的一维子空间,即N(Q)={ x|x = a(1,-1)T, a \in R}。
2、如何将一个向量投影到行满秩矩阵A的行向量生成子空间?
现在已知一个行满秩矩阵 A m m × n A^{m\times n}_m Amm×n,R(AH)是由A的行向量生成的子空间。由上面的例子,可以猜到,n维欧氏空间向R(AH)的正交投影是唯一的,斜投影是不唯一的(此处考虑典型情况,而非考虑A行列满秩的极端情况)。
现在推导一个由A构成的正交投影矩阵P。
- y = y 1 + y 2 , y 1 ∈ R ( A H ) , y 2 ∈ R ⊥ ( A H ) y=y_1+y_2,y_1\in R(A^H),y_2\in R^\perp(A^H) y=y1+y2,y1∈R(AH),y2∈R⊥(AH)
- P y = P ( y 1 + y 2 ) = y 1 Py=P(y_1+y_2)=y_1 Py=P(y1+y2)=y1
- y 1 ∈ R ( A H ) , ∴ y 1 = A H x y_1\in R(A^H),\therefore y_1=A^Hx y1∈R(AH),∴y1=AHx,x是一个m维的列向量,即y1可表示为A的行向量的线性组合
- y 2 ∈ R ⊥ ( A H ) = N ( A ) , A y 2 = 0 , A y = A A H x y_2\in R^\perp(A^H)=N(A),Ay_2=0,Ay=AA^Hx y2∈R⊥(AH)=N(A),Ay2=0,Ay=AAHx
- x = ( A A H ) − 1 A y , y 1 = [ A H ( A A H ) − 1 A ] y x=(AA^H)^{-1}Ay,y_1 = [A^H(AA^H)^{-1}A]y x=(AAH)−1Ay,y1=[AH(AAH)−1A]y
- P = A H ( A A H ) − 1 A = P H P = A^H(AA^H)^{-1}A=P^H P=AH(AAH)−1A=PH
从第5步可以知道为什么需要A行满秩了,只有行满秩的矩阵, y 1 ∈ R ( A H ) , y 1 = A H x y_1\in R(A^H),y_1=A^Hx y1∈R(AH),y1=AHx,其中x才有唯一解。
至此,我们知道 P = A H ( A A H ) − 1 A P = A^H(AA^H)^{-1}A P=AH(AAH)−1A是一个正交投影矩阵,将一个向量投影到A的行向量的生成子空间。
3、关于Rosen梯度投影法
Rosen梯度投影法的可行下降方向: P k = Q ( − g k ) = ( I − N T ( N N T ) − 1 N ) g k P^k = Q(-g^k) = (I-N^T(NN^T)^{-1}N)g^k Pk=Q(−gk)=(I−NT(NNT)−1N)gk
Q是一个投影矩阵,并且投向 N T ( N N T ) − 1 N N^T(NN^T)^{-1}N NT(NNT)−1N的正交补空间,N是由积极约束的法向量组成的矩阵,因此P是负梯度方向向积极约束的法向量张成的行空间的正交补的投影。从几何上看,就是将负梯度方向投影向了积极约束的超平面的交线上。
需要注意,Rosen梯度投影法的约束条件是一个多面集。

相关文章:
向量投影:如何将一个向量投影到矩阵的行向量生成子空间?
向量投影:如何将一个向量投影到矩阵的行向量生成子空间? 前言 本问题是在学习Rosen梯度投影优化方法的时候遇到的问题,主要是对于正交投影矩阵(NT(NNT)-1N)的不理解,因此经过查阅资料,学习了关于向量投影的知识&…...
Ubuntu18.04安装GTSAM库(亲测可用)
在SLAM(Simultaneous Localization and Mapping)和SFM(Structure from Motion)这些复杂的估计问题中,因子图算法以其高效和灵活性而脱颖而出,成为图模型领域的核心技术。GTSAM(Georgia Tech Smo…...
SpringBoot中常见配置配置,MySQL、Redis、MinIO等
SpringBoot中配置 启动端口号 server:port: 8501 spring:application:name: server-managerprofiles:active: dev # 当前使用的配置文件servlet:multipart:max-file-size: 20MB # 最大文件max-request-size: 20MB# # 最大请求数据库相关 MySQL spring:datasource:type: com…...
面向LLM的App架构——技术维度
这是两篇面向LLM的大前端架构的第二篇,主要写我对LLM辅助开发能力的认知以及由此推演出的适合LLM辅助开发的技术架构。 LLM之于代码 商业代码对质量的要求其实对LLM是有点高的。主要是输入准确度、输出准确度(这个是绝大部分人质疑的点)、知…...
ArkUI - 状态管理
目录 一、State装饰器 二、自定义组件 三、Prop和Link、Provide和Consume 四、Observed和ObjectLink 一、State装饰器 这里涉及到两个概念 状态 和 视图 状态(State):指驱动视图更新的数据(就是被State注解标记的变量&…...
C++ 学习系列 -- C++ 中的多态行为
一 多态是什么? 多态是面向对象三大特征中重要一项,另外两项分别是封装与继承。 所谓多态,指的是多种不同的形态,也就是去完成某个具体的行为,多个不同的对象去操作同一个函数时,会产生不同的行为&…...
Spring Cloud中实现Feign声明式服务调用客户端
可以通过OpenFeign从一个服务中调用另一个服务,我们一般采用的方式就是定义一个Feign接口并使用FeignClient注解来进行标注,feign会默认为我们创建的接口生成一个代理对象。 当我们在代码中调用Feign接口的方法的时候,实际上就是在调用我们Fe…...
【网络编程】网络通信基础——简述TCP/IP协议
个人主页:兜里有颗棉花糖 欢迎 点赞👍 收藏✨ 留言✉ 加关注💓本文由 兜里有颗棉花糖 原创 收录于专栏【网络编程】【Java系列】 本专栏旨在分享学习网络编程的一点学习心得,欢迎大家在评论区交流讨论💌 目录 一、ip地…...
观察者模式 Observer
观察者模式属于行为型模式。在程序设计中,观察者模式通常由两个对象组成:观察者和被观察者。当被观察者状态发生改变时,它会通知所有的观察者对象,使他们能够及时做出响应。 三要素:观察者(Observer&#…...
Hadoop入门学习笔记——七、Hive语法
视频课程地址:https://www.bilibili.com/video/BV1WY4y197g7 课程资料链接:https://pan.baidu.com/s/15KpnWeKpvExpKmOC8xjmtQ?pwd5ay8 Hadoop入门学习笔记(汇总) 目录 七、Hive语法7.1. 数据库相关操作7.1.1. 创建数据库7.1.2…...
采用SpringBoot框架+原生HTML、JS前后端分离模式开发和部署的电子病历编辑器源码(电子病历评级4级)
概述: 电子病历是指医务人员在医疗活动过程中,使用医疗机构信息系统生成的文字、符号、图表、图形、数据、影像等数字化信息,并能实现存储、管理、传输和重现的医疗记录,是病历的一种记录形式。 医院通过电子病历以电子化方式记录患者就诊的信息,包括&…...
HTML表单
<!DOCTYPE html> <html><head><meta charset"utf-8"><title>招聘案列</title></head><body><h1>午睡操场传来蝉的声音</h1><hr /><form>昵称:<input type"text" …...
Http 请求体和响应体中重要的字段
Http 请求体 Accept:用于告诉服务器客户端能够处理哪些媒体类型。Accept 头中的值通常是一个或多个 MIME 类型,并按优先级排序。服务器会根据 Accept 头中的值来决定响应的内容类型。例如,Accept: text/plain, text/html。Content-Type&…...
最新国内可用使用GPT4.0,GPT语音对话,Midjourney绘画,DALL-E3文生图
一、前言 ChatGPT3.5、GPT4.0、GPT语音对话、Midjourney绘画,相信对大家应该不感到陌生吧?简单来说,GPT-4技术比之前的GPT-3.5相对来说更加智能,会根据用户的要求生成多种内容甚至也可以和用户进行创作交流。 然而,GP…...
【量化金融】证券投资学
韭菜的自我修养 第一章: 基本框架和概念1.1 大盘底部形成的技术条件1.2 牛市与熊市1.3 交易系统1.3.1 树懒型交易系统1.3.2 止损止损的4个技术 第二章:证券家族4兄弟2.1 债券(1)债券,是伟大的创新(2&#x…...
【Bash】重点总结
文章目录 1. 总体认识1.1. Shell概述1.2. 第一个Shell脚本 2. 变量2.1. 定义变量2.2. 使用变量2.3. 只读变量2.4. 删除变量2.5. 变量类型2.5.1. 字符串变量 1. 总体认识 1.1. Shell概述 Shell是一个用C语言编写的程序,这个程序提供了一个界面,用户通过…...
Git安装和使用教程,并以gitee为例实现远程连接远程仓库
文章目录 1、Git简介及安装2、使用方法2.1、Git的启动与配置2.2、基本操作2.2.1、搭建自己的workspace2.2.2、git add2.2.3、git commit2.2.4、忽略某些文件不予提交2.2.5、以gitee为例实现git连接gitee远程仓库来托管代码 1、Git简介及安装 版本控制(Revision cont…...
Hadoop入门学习笔记——一、VMware准备Linux虚拟机
视频课程地址:https://www.bilibili.com/video/BV1WY4y197g7 课程资料链接:https://pan.baidu.com/s/15KpnWeKpvExpKmOC8xjmtQ?pwd5ay8 Hadoop入门学习笔记(汇总) 目录 一、VMware准备Linux虚拟机1.1. VMware安装Linux虚拟机1.…...
CSS3新增特性
CSS3 CSS3私有前缀 W3C 标准所提出的某个CSS 特性,在被浏览器正式支持之前,浏览器厂商会根据浏览器的内核,使用私有前缀来测试该 CSS 特性,在浏览器正式支持该 CSS 特性后,就不需要私有前缀了。 查询 CSS3 兼容性的网…...
Unity中Shader观察空间推导
文章目录 前言一、本地空间怎么转化到观察空间二、怎么得到观察空间的基向量1、Z轴向量2、假设 观察空间的 Y~假设~ (0,1,0)3、X Y 与 Z 的叉积4、Y X 与 Z 的叉积 三、求 [V~world~]^T^1、求V~world~2、求[V~world~]^T^ 四、求出最后在Unity中使用的公式1、偏移坐标轴2、把…...
stm32G473的flash模式是单bank还是双bank?
今天突然有人stm32G473的flash模式是单bank还是双bank?由于时间太久,我真忘记了。搜搜发现,还真有人和我一样。见下面的链接:https://shequ.stmicroelectronics.cn/forum.php?modviewthread&tid644563 根据STM32G4系列参考手…...
论文解读:交大港大上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架(二)
HoST框架核心实现方法详解 - 论文深度解读(第二部分) 《Learning Humanoid Standing-up Control across Diverse Postures》 系列文章: 论文深度解读 + 算法与代码分析(二) 作者机构: 上海AI Lab, 上海交通大学, 香港大学, 浙江大学, 香港中文大学 论文主题: 人形机器人…...
mongodb源码分析session执行handleRequest命令find过程
mongo/transport/service_state_machine.cpp已经分析startSession创建ASIOSession过程,并且验证connection是否超过限制ASIOSession和connection是循环接受客户端命令,把数据流转换成Message,状态转变流程是:State::Created 》 St…...
【单片机期末】单片机系统设计
主要内容:系统状态机,系统时基,系统需求分析,系统构建,系统状态流图 一、题目要求 二、绘制系统状态流图 题目:根据上述描述绘制系统状态流图,注明状态转移条件及方向。 三、利用定时器产生时…...
BCS 2025|百度副总裁陈洋:智能体在安全领域的应用实践
6月5日,2025全球数字经济大会数字安全主论坛暨北京网络安全大会在国家会议中心隆重开幕。百度副总裁陈洋受邀出席,并作《智能体在安全领域的应用实践》主题演讲,分享了在智能体在安全领域的突破性实践。他指出,百度通过将安全能力…...
拉力测试cuda pytorch 把 4070显卡拉满
import torch import timedef stress_test_gpu(matrix_size16384, duration300):"""对GPU进行压力测试,通过持续的矩阵乘法来最大化GPU利用率参数:matrix_size: 矩阵维度大小,增大可提高计算复杂度duration: 测试持续时间(秒&…...
HTML前端开发:JavaScript 常用事件详解
作为前端开发的核心,JavaScript 事件是用户与网页交互的基础。以下是常见事件的详细说明和用法示例: 1. onclick - 点击事件 当元素被单击时触发(左键点击) button.onclick function() {alert("按钮被点击了!&…...
C++八股 —— 单例模式
文章目录 1. 基本概念2. 设计要点3. 实现方式4. 详解懒汉模式 1. 基本概念 线程安全(Thread Safety) 线程安全是指在多线程环境下,某个函数、类或代码片段能够被多个线程同时调用时,仍能保证数据的一致性和逻辑的正确性…...
项目部署到Linux上时遇到的错误(Redis,MySQL,无法正确连接,地址占用问题)
Redis无法正确连接 在运行jar包时出现了这样的错误 查询得知问题核心在于Redis连接失败,具体原因是客户端发送了密码认证请求,但Redis服务器未设置密码 1.为Redis设置密码(匹配客户端配置) 步骤: 1).修…...
LLMs 系列实操科普(1)
写在前面: 本期内容我们继续 Andrej Karpathy 的《How I use LLMs》讲座内容,原视频时长 ~130 分钟,以实操演示主流的一些 LLMs 的使用,由于涉及到实操,实际上并不适合以文字整理,但还是决定尽量整理一份笔…...
